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A common goal in the control of a large network is to minimize the number of driver nodes or control

inputs. Yet, the physical determination of control signals and the properties of the resulting control

trajectories remain widely underexplored. Here we show that (i) numerical control fails in practice even

for linear systems if the controllability Gramian is ill conditioned, which occurs frequently even when

existing controllability criteria are satisfied unambiguously, (ii) the control trajectories are generally

nonlocal in the phase space, and their lengths are strongly anti-correlated with the numerical success rate

and number of control inputs, and (iii) numerical success rate increases abruptly from zero to nearly one as

the number of control inputs is increased, a transformation we term numerical controllability transition.

This reveals a trade-off between nonlocality of the control trajectory in the phase space and nonlocality of

the control inputs in the network itself. The failure of numerical control cannot be overcome in general by

merely increasing numerical precision—successful control requires instead increasing the number of

control inputs beyond the numerical controllability transition.

DOI: 10.1103/PhysRevLett.110.208701 PACS numbers: 89.75.Hc, 05.45.�a

A system is controllable if its state can be driven to
different predefined states by a given set of input control
signals, with controllability depending on both the number
and the placement of the control inputs [1]. Control often
relies on the promise that the direct manipulation of rela-
tively few degrees of freedom can render the entire system
controllable. This promise has special meaning in the
study of complex networks, where the large total number
of nodes contrasts with the limited number that can be
directly controlled due to cost and physical constraints.
The control of network systems is important in applica-
tions as diverse as the operation of infrastructure networks
[2], coordination of moving sensors and robots [3], devis-
ing of therapeutic interventions [4], management of eco-
logical networks [5], and control of cascading failures in
general [6,7], and it has received increased attention in the
recent physics literature [7–12].

A number of significant recent studies have focused
on networks with n-dimensional linear time-invariant
dynamics [13–16],

dxðtÞ
dt

¼ AxðtÞ þ BuðtÞ; (1)

with controllability usually determined by the Kalman’s
controllability matrix K ¼ ½B AB � � �An�1B � [17].

Given the matrices A and B, control inputs uðtÞ exist

for any initial state xð0Þ and target state xð1Þ if and only
if K has full row rank. In particular, if all nodes in a
network have intrinsic dynamics so that Aii � 0 for all i,
it follows that generically there exists uðtÞ such that the
entire network can in theory be controlled by a single
control input [14,18].

A fundamental question is, however, whether the control
signals uðtÞ can actually be constructed in practice. At first
glance, this question may sound dull given that an explicit
expression exists for uðtÞ corresponding to the minimal-
energy control trajectories in t 2 ½t0; t1�:

uðtÞ ¼ BT�Tðt0; tÞW�1ðt0; t1Þ½�ðt0; t1Þxð1Þ � xð0Þ�; (2)

where Wðt0;t1Þ¼
Rt1
t0 �ðt0;tÞBBT�Tðt0;tÞdt is the controll-

ability Gramian and �ðt0; tÞ ¼ eðt0�tÞA [19]. Incidentally,
matrixWðt0; t1Þ being invertible [hence Eq. (2) being well-
defined] is equivalent to the commonly used Kalman’s rank
condition mentioned above. Quite surprisingly, despite this
explicit solution and formal equivalence, we show that the
determination of uðtÞ is fundamentally limited in networks
with more than a handful of nodes. This calls for a careful
re-interpretation of existing controllability criteria.
Specifically, in this Letter we show that control fails in

practice if the controllability Gramian is ill conditioned,
which can occur even when the corresponding Kalman’s
controllability matrix is well conditioned.We also show that
the control trajectory from an initial to a target state is
generally nonlocal in the phase space and remains finite
size (in fact very long) even when the target state is brought

arbitrarily close to the initial one. The length
Rt1
t0 k _xðtÞkdt

of such a trajectory generally increases with the condition
number of the Gramian. Both the nonlocality of the control
trajectory and control failure rate are reduced by increasing
the number of control inputs. The latter manifests itself as a
sharp transition as a function of the number of control inputs,
below which numerical control always fails and above
which it succeeds. Aside from its implications for control,
the characterization of such a numerical controllability
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transition adds a new dimension to the research on structural
[20], dynamical [21], and algorithmic complexity [22] tran-
sitions in networks, which has had broad impacts [23–25],
with recent applications ranging from synchronization and
percolation to epidemic processes [26–30].

There are known factors that can cause control to fail,
including nonlinearity of the dynamics, parameter uncer-
tainty, and stochasticity. Our results show that even in the
most favorable case, in which the system is deterministic,
autonomous, and linear, the disparity between theory and
practice poses a fundamental limit on our ability to control
large networks.

We first establish the nonlocality of control trajectories.

We say that a state xð0Þ of system (1) is strictly locally

controllable (SLC) if for any ball Bðxð0Þ; "Þ of radius " > 0

centered at xð0Þ there is a radius � > 0 such that any target

xð1Þ inside the concentric ball Bðxð0Þ; �Þ can be reached from
xð0Þ with a control trajectory entirely inside Bðxð0Þ; "Þ—see
Fig. 1(a). Note that a state can be locally controllable, in the
sense that control trajectories always exist for neighboring
target states, and yet not be SLC. Figure 1(b) shows one
such example in two dimensions: for a state in the x1 > 0
half-plane, the control trajectories to any neighboring target
state with a smaller x2 component necessarily cross into the
x1 < 0 half-plane (symmetric conclusion holds for initial
states in the other half-plane).

We show that this result is in fact general for any control-
lable system in which one or more components are not
directly controlled. Indeed, if the kth component is not
directly controlled, an initial state in the half-space
ðAxÞk > 0 can only be driven to a neighboring target state

with xð1Þk < xð0Þk if the control trajectory crosses into the

half-space ðAxÞk < 0, since otherwise _xkðtÞ ¼ ðAxðtÞÞk
would be non-negative and xkðtÞ would never decrease
(analogous argument applies to the other half-space).

Therefore, all states outside the hyperplane ðAxÞk ¼ 0 are
not SLC, and hence almost all states are not SLC. The
origin, on the other hand, is the only state that, when A is
nonsingular, is SLC for any control matrix B for which the
system is controllable. The control trajectories defined by

Eqs. (1) and (2), which minimize the energy
Rt1
t0 kuðtÞk2dt,

are given by

xðtÞ ¼ �ðt; t0Þ½xð0Þ þMt0;t1;tð�ðt0; t1Þxð1Þ � xð0ÞÞ�; (3)

where Mt0;t1;t ¼ Wðt0; tÞW�1ðt0; t1Þ [19]. The SLC prop-

erty of the origin then follows from taking the norm on

both sides of Eq. (3) for xð0Þ ¼ 0 and upper-bounding the
norm of the integral (exponential) terms by the integral

(exponential) of the norm, which leads to kxðtÞk � Ckxð1Þk
for C ¼ ðt1 � t0ÞkBBTk kW�1ðt0; t1Þk. What sets the ori-
gin aside is that, for invertible A, it corresponds to the only
fixed point of the system. Having established the nonlo-
cality of control trajectories for typical states in general, we
now study in detail the minimal-energy control trajectories.
We focus on undirected connected networks endowed

with the dynamics in Eq. (1) for matrices A with nonzero
diagonal elements. These networks generically satisfy the
Kalman’s controllability condition for a single control
input. We consider Erdős-Rényi (ER) networks for a given
number of nodes n and connection probability p. We
address the impact of network structure by also considering
networks generated using the configuration model [24] for
scale-free (SF) degree distributions PðkÞ�k�� for k�kmin,
where in our simulations the minimum degree kmin is
chosen to keep the average degree fixed as � is varied.
The edges and the diagonal elements Aii are assigned
weights drawn from a uniform distribution in ½�1; 1�.
Without loss of generality, we assume that the nodes of
the networks are one-dimensional dynamical systems
[i.e., xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; :::; xnðtÞÞ, where xiðtÞ is a scalar
variable representing the state of node i] and that the control
matrix B is diagonal upon row permutation, so that there
is a one-to-one relationship between control inputs and
driver nodes. For each network, number q of driver nodes,
and given initial and target states, we calculate numerically
the minimal-energy control trajectories given by Eq. (3).
Unless noted otherwise, we choose the driver nodes rand-
omly at each independent realization and consider the
control time window t0 � t � t1 for t0 ¼ 0 and t1 ¼ 1.
Numerical control is declared successful if the numerically

calculated state xðt1Þ is within a given distance � �
kxð1Þ � xð0Þk of the target state xð1Þ, where in our simula-
tions we use � ¼ 10�6.
Figure 2 shows the average length L of the control

trajectories. For typical initial states, L does not approach
zero (and in fact remains essentially constant) as the dis-
tance to the targets is reduced, in stark contrast with the
case in which the initial state is at the origin [Fig. 2(a)].
This behavior becomes more pronounced when the number
of driver nodes is small, reaching L ¼ 105 for q=n ¼ 0:15;

FIG. 1 (color online). (a) Illustration of a state that is SLC
(left) and of a state that is not (right). (b) Example system _x1 ¼
x1 þ u1ðtÞ, _x2 ¼ x1, where any state not on the line x1 ¼ 0 is not
SLC; the curves indicate minimal-energy control trajectories for
the given initial state (open symbol) and target states (solid
symbols). The background arrows indicate the vector field in
the absence of control. As this two-dimensional example sug-
gests, almost all states of linear systems described by Eq. (1) are
not SLC whenever the number of control inputs is smaller than
the number of dynamical variables.
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conversely, L decreases as q is increased [Fig. 2(b)].
The latter can be understood in terms of our analytical
argument above, since the smaller n� q the fewer hyper-
planes ðAxÞk ¼ 0 the control trajectory has to cross in order
for _xkðtÞ to acquire the right sign for every component k not
directly controlled.

Given the mathematical equivalence between the
Kalman’s rank condition and the invertibility of the con-
trollability Gramian, one might be tempted to assume that
an ill-conditioned controllability Gramian Wðt0; t1Þ is a
consequence of an ill-conditioned Kalman’s controllability
matrixK. Here we disprove this conjecture by showing that
the controllability Gramian can be nearly singular even
when the corresponding controllability matrix is well
conditioned. This is best characterized by the reciprocal
condition number �. As a mathematically treatable
example, we consider a directed linear chain CðnÞ contain-
ing n nodes and no self-loops: 1 ! 2 ! 3 � � � ! n.
We examine the control of this network through the
direct control of the root node, i.e., node 1. The control
matrix is such that Bi ¼ �1;i and, assuming for simplicity

that the network is unweighted, matrix A is given by
Aij ¼ �i;jþ1 for i, j ¼ 1 . . . n. It follows from Eq. (1) that

K is the n� n identity matrix. Therefore, K has full rank,
has reciprocal condition number � ¼ 1, and is in fact the
best conditioned of all matrices. Now, consider Wðt0; t1Þ.
Taking for convenience t0 ¼ 0, we can show that

Wð0; t1Þ ¼
Rt1
0 gð�ÞgTð�Þd�, where

gð�Þ ¼
�
1;��;

ð��Þ2
2!

; . . . ;
ð��Þi�1

ði� 1Þ! ; . . . ;
ð��Þn�1

ðn� 1Þ!
�
T
:

Thus, we can calculate the analytic expression for
each entry of the Gramian: Wð0; t1Þij ¼ �ð�t1Þiþj�1=

½ðiþ j� 1Þði� 1Þ!ðj� 1Þ!�. For fixed control time t1, the
reciprocal condition number � of Wð0; t1Þ decreases expo-
nentially as a function of the number of nodes in the linear

chain, as illustrated in the inset of Fig. 3(b) for t1 ¼ 1.
Therefore, as the size of the linear chain increases, the
controllability Gramian quickly becomes nearly singular,
making the numerical control of system (1) nearly impos-
sible, even though the Kalman’s controllability matrix
remains well conditioned.
Figure 3 shows that this behavior is indeed general for

the ER networks we consider. The reciprocal condition
number of W decreases exponentially as the number of
control inputs is reduced [Fig. 3(a)] or the size of the
network is increased [Fig. 3(b)], while the reciprocal con-
dition number of K (not shown) is generally larger thanffiffiffiffiffiffiffiffiffiffiffiffi
�ðWÞp

[31]. Moreover, it follows that the average length of
the control trajectories is strongly correlated with the con-
dition number of the controllability Gramian [Fig. 3(a),
inset]. This can be rationalized by noting that both L and
�ðWÞ are measures of how difficult it is to actually control
the system in practice. Therefore, although the Kalman’s
controllability matrix K has attractive analytical proper-
ties, its use in practice requires caution. In particular, since
the minimum-energy control involves the inversion of the
controllability Gramian W (rather than of the Kalman’s
controllability matrix), we note that it is the numerical rank
of W that is often most relevant.
A full-rank matrix is numerically rank deficient if one or

more of its singular values fall below the predefined nu-
merical threshold. If such a full-rank matrix has a bounded
largest singular value, the numerical rank being smaller
than the actual rank is necessarily related to a small recip-
rocal condition number �, and vice versa, since � is the
ratio of the smallest to the largest singular value. While
leading to a deficient numerical rank for matrix W when
q=n is small, this relation is not a factor for matrix K
because this matrix is reasonably well conditioned in the
networks we consider, indicating that the numerical calcu-
lation of its rank is reliable. Indeed, for all networks
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FIG. 2 (color online). (a) Average length of the control trajec-
tories as a function of the distance from the target when the
initial states are away from the origin versus when they are at the
origin. In the former case the initial states were chosen randomly
on the unit sphere centered at the origin. In both cases the target
states are randomly oriented � apart and q ¼ 25. (b) Average
length of the control trajectories as a function of the number
of control inputs for initial states away from the origin and
� ¼ 10�2. Each data point corresponds to 1000 realizations,
for ER networks with n ¼ 100.
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FIG. 3 (color online). Reciprocal condition number of the
controllability Gramian W as a function of (a) the number of
control inputs for n ¼ 100 and (b) the network size for ER
networks with np ¼ 10. Insets: relation between the average
length of the control trajectories and the reciprocal condition
number of W [panel (a)]; reciprocal condition number of W for
the (analytically solvable) chain networks CðnÞ with q ¼ 1
(defined in the text) [panel (b)]. The statistics and parameters
not shown are the same used in Fig. 2(b).
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considered in Fig. 3 we verified that the numerical rank ofK
is n for any numerical threshold smaller than 10�3.

Figure 4(a) shows that the numerical success rate
increases sharply from zero to one as the number of driver
nodes is increased. According to the Kalman’s rank con-
dition, all networks we simulate are controllable in theory
for q as small as 1. The transition in Fig. 4(a) is a direct
consequence of the decrease in the condition number of the
controllability Gramian and the limitation it imposes on
numerical calculations. The numerical error in computing
Eq. (3) is dominated by the round-off errors in the calcu-
lation of W�1. Taking t ¼ t1 and using tilde to denote
numerically computed values, we obtain

k~xð1Þ � xð1Þk & DkWð ~W�1 �W�1Þk; (4)

where z ¼ �ðt0; t1Þxð1Þ � xð0Þ and D ¼ k�ðt1; t0Þkkzk.
If W þ�W is the exact inverse of ~W�1, then the right
side of Eq. (4) is bounded from above byDk�Wkk ~W�1k	
DkWkkW�1kðk�Wk=kWkÞ, where kWkkW�1k¼1=�ðWÞ
and k�Wk=kWk is of the order of the numerical preci-
sion � [32]. Thus, we predict that the transition to success-
ful numerical control will occur in general as �ðWÞ
decreases past

�c 	 D0 �
�
; (5)

where D0 is a constant determined by t1 � t0, x
ð0Þ, xð1Þ, and

A, and � is the radius of convergence. For double precision
(� ’ 10�16) and � ¼ 10�6, as considered in our simula-
tions, the transition is predicted to occur around � ¼ 10�10

for D0 of order unity, which agrees with our numerics.

To further characterize this transition, we analyze its
width within the network ensemble, defined as �q=n 

ðqc0 � qcÞ=n, where qc and qc0 mark the integer number of
control inputs right below 5% and right above 95% success
rate, respectively. As shown in Fig. 4(b), the transition
becomes increasingly sharp as the size of the network
increases. The transition point, which we take as being
qc=n for the purpose of this discussion, is around 0.20 and
increases slowly as n increases.
To address the impact of degree heterogeneity, we have

also analyzed the controllability transition in SF networks.
As shown in Figs. 4(c) and 4(d), the transition becomes
wider as the variance of the degree distribution increases
(i.e., � decreases), indicating that control fails more
often the more heterogeneous the degree distribution
(cf. Ref. [13]), but the starting point of the transition is
very insensitive to the degree distribution and is essentially
the same for ER and SF networks with the same network
size and average degree [e.g., Figs. 4(a) and 4(c) for n ¼
300]. Moreover, these conclusions do not depend sensi-
tively on how the driver nodes are selected: we have
verified that the curves in Figs. 4(a) and 4(c) shift horizon-
tally by less than the size of the symbols when the driver
nodes are selected not randomly but instead as the lowest-
or the highest-degree nodes in the network.
A few observations are in order. First, one may ask

whether the impossibility of controlling the system with
a reduced number of driver nodes could be avoided by
increasing the precision of the numerical calculations.
Because the reciprocal condition number �ðWÞ decreases
exponentially as q is reduced while �c decreases only
linearly as � is reduced, for large networks any realistic
increase in precision will only have a limited effect in
reducing the critical fraction of driver nodes qc=n at which
the numerical controllability transition takes place. Thus,
tantamount to the impossibility of long-term predictability
in chaotic dynamics, this fundamental limitation cannot be
easily overcome by increasing numerical precision and
becomes even more pronounced in larger networks.
Second, subtle differences in the formulation of the

dynamics in Eq. (1) have led to very different conclusions
about the minimal number of driver nodes according to the
Kalman’s rank condition, being generically one if the
diagonal elements of A are nonzero [14,18] and generally
much larger than one if they are not [13,33]. It is thus
satisfying to find that in practice the results are far more
robust against small changes in the model parameters.
Third, the nonlocality of control trajectories identified

here reveals an intriguing mechanism of failure in applying
control results from linearized dynamics to their nonlinear
counterparts [34]: such an approach fails because the con-
trol trajectories are required to go outside the neighborhood
in which the linearization is valid. Moreover, there are
known examples of nonlinear systems that are globally
controllable while their linearizations are not [35], and
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FIG. 4 (color online). Numerical controllability transitions for
(a), (b) ER networks of different sizes and (c), (d) SF networks
with different scaling exponents. (a), (c) Success rate as function
of the number of control inputs. (b), (d) Transition width (main
panel) and transition point (inset). The average degree was set
to 10 and, for the SF networks, n ¼ 300. The statistics and
parameters not shown are the same used in Fig. 2(b).
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it is straightforward to identify network systems too which
have this property [36]. It is thus natural to speculate that
approaches that exploit nonlinear properties of the dynam-
ics (see, e.g., [37]), although potentially more involved, can
be better suited to address nonlinear systems—for a general
such approach specifically developed to control complex
networks with nonlinear dynamics, see Ref. [38].

Our demonstration that either the control trajectory is
nonlocal in the phase space or the control inputs are non-
local in the network has several implications. In practice,
the former leads to failure of the numerical control and the
latter points to an overhead that has to be accounted for in
optimizing the number of driver nodes. For the random
networks considered here, this gives rise to a sharp tran-
sition as a function of the number of driver nodes, below
which numerical control always fails and above which it
succeeds. These findings suggest the need of a controll-
ability criterion that accounts not only for the existence but
also for the actual computability of the control interven-
tions: the system is controllable in practice if and only if
the controllability Gramian has full numerical rank. We
suggest that by applying such a criterion future research
may reveal a rich set of relations between controllability
and network structure even when no dependence is pre-
dicted by the Kalman’s rank condition.

This study was supported by NSF Grant
No. DMS-1057128.
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[29] J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno,
Phys. Rev. Lett. 106, 128701 (2011).

[30] S. Squires, E. Ott, and M. Girvan, Phys. Rev. Lett. 109,
085701 (2012).

[31] In the case of matrix K, the reported � was calculated
from the submatrix formed by the first n columns of K,
which suffices to determine its full row rank.

[32] J.W. Demmel, Applied Numerical Linear Algebra (SIAM,
Philadelphia, PA, 1997).

[33] K. Murota, Systems Analysis by Graphs and Matroids:
Structural Solvability and Controllability (Springer,
Berlin, 1987), 1st ed.

[34] J. Sun, S. P. Cornelius, W. L. Kath, and A. E. Motter,
arXiv:1108.5739.

[35] K. Lynch, Principles of Robot Motion: Theory, Algorithms,
and Implementations (MIT, Cambridge,MA, 2005), p. 401.

[36] A simple example is given by a directed three-node star
network with nonlinear coupling and control input placed
on the root node: _x1 ¼ u1ðtÞ, _x2 ¼ ax1, _x3 ¼ bx31, where
a, b � 0. While the linearization of this system fails the
Kalman’s rank condition, the nonlinear system itself can
be shown to be controllable by applying Theorem 2.1 in Y.
Sun, Proceedings of the 29th Chinese Control Conference,
Beijing, 2010 (IEEE, Beijing, China, 2010), p. 343.

[37] H. K. Khalil, Nonlinear Systems (Prentice Hall,
Englewood Cliffs, NJ, 2001), 3rd ed.

[38] S. P. Cornelius, W. L. Kath, and A. E. Motter, Nat.
Commun. (to be published).

PRL 110, 208701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
17 MAY 2013

208701-5

http://dx.doi.org/10.1371/journal.pcbi.1002267
http://dx.doi.org/10.1371/journal.pcbi.1002267
http://dx.doi.org/10.1038/ncomms1163
http://dx.doi.org/10.1038/ncomms1163
http://dx.doi.org/10.1063/PT.3.1518
http://dx.doi.org/10.1063/PT.3.1518
http://dx.doi.org/10.1103/PhysRevE.75.056110
http://dx.doi.org/10.1103/PhysRevE.75.056110
http://dx.doi.org/10.1103/PhysRevE.75.046103
http://dx.doi.org/10.1063/1.3080192
http://dx.doi.org/10.1088/1367-2630/11/11/113047
http://dx.doi.org/10.1088/1367-2630/11/11/113047
http://dx.doi.org/10.1038/srep00658
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1371/journal.pone.0038398
http://dx.doi.org/10.1103/PhysRevLett.108.218703
http://dx.doi.org/10.1103/PhysRevLett.108.218703
http://dx.doi.org/10.1038/nphys2327
http://dx.doi.org/10.1137/0301010
http://dx.doi.org/10.1109/TAC.1974.1100557
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1126/science.1167782
http://dx.doi.org/10.1126/science.1167782
http://dx.doi.org/10.1103/PhysRevLett.105.255701
http://dx.doi.org/10.1103/PhysRevLett.106.225701
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1103/PhysRevLett.109.085701
http://dx.doi.org/10.1103/PhysRevLett.109.085701
http://arXiv.org/abs/1108.5739

