
Microscopic Origin of the Logarithmic Time Evolution
of Aging Processes in Complex Systems

Michael A. Lomholt,1 Ludvig Lizana,2,3 Ralf Metzler,4,5 and Tobias Ambjörnsson6

1MEMPHYS, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark,
DK-5230 Odense M, Denmark

2Department of Physics and Center for Soft Matter Research, New York University,
4 Washington Place, New York, New York 10003, USA

3Department of Physics, Integrated Science Lab, Umeå University, SE-901 87 Umeå, Sweden
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There exists compelling experimental evidence in numerous systems for logarithmically slow time

evolution, yet its full theoretical understanding remains elusive. We here introduce and study a generic

transition process in complex systems, based on nonrenewal, aging waiting times. Each state n of the

system follows a local clock initiated at t ¼ 0. The random time � between clock ticks follows the waiting

time density c ð�Þ. Transitions between states occur only at local clock ticks and are hence triggered by the
local forward waiting time, rather than by c ð�Þ. For power-law forms c ð�Þ ’ ��1�� (0<�< 1) we

obtain a logarithmic time evolution of the state number hnðtÞi ’ logðt=t0Þ, while for �> 2 the process

becomes normal in the sense that hnðtÞi ’ t. In the intermediate range 1<�< 2 we find the power-law

growth hnðtÞi ’ t��1. Our model provides a universal description for transition dynamics between aging

and nonaging states.
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Imagine that you put a thin sheet of paper in a vertical
cylinder and let the paper crumple under a heavy piston. If
during compression you measure the piston’s velocity, you
will notice that it decreases over time, well in accordance
with your intuition. However, what may appear surprising
is that the piston keeps compressing the paper and never
seems to come to a full rest. The outcome of such an
experiment was reported by Matan et al. [1], concluding
that the piston’s position zðtÞ at long times t decreases
logarithmically, zðtÞ � a� b logðt= secÞ, where a and b
are constants. The crumpling of paper is by far not
the only example for logarithmically slow dynamics.
Experimentally, it is observed in DNA local structure
relaxation [2], the time evolution of frictional strength
[3], compactification of grains by tapping [4], kinetics of
amorphous-amorphous transformations in glasses under
high pressure [5], magnetization dynamics in high-Tc

superconductors [6], conductance relaxations [7,8], and
current relaxation in semiconductor field-effect transistors
[9]. Theoretical studies of logarithmic time evolution
include decays in colloidal systems [10], aging in simple
glasses [11] (see also Supplemental Material [12]),
magnetization relaxation in spin glasses [13], evolution
of node connectivity in a network with uniform attachment
[14], diffusion in a random force landscape (Sinai diffu-
sion) [15], and record statistics [16].

Here we introduce a generic microscopic model
displaying logarithmic time evolution which is based on

nonrenewal sequential transitions between aging states
labeled by n (see Fig. 1). As we show analytically, the
qth order moments of the resulting counting process at
large times grow as
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FIG. 1 (color online). Dynamic update of successive states. At
each state n, a tick of the local clock allows the transition to the
next state, nþ 1. Local clock ticks are separated by waiting
times � drawn from the distribution c ð�Þ. After transition from
state n� 1, the system is locked in n until the next clock tick at
n, after the forward waiting time �1 < �. Typically, a transition
at a new state arrives during a long waiting time, the statistics of
the �1 thus slowing down the overall dynamics.
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such that, particularly, we find the logarithmically slow
counting process hnðtÞi ’ logðt=t0Þ. The parameters � and
� depend on the details of the underlying dynamics and are
specified below, and t0 is the time when the counting
started after global system initiation at t ¼ 0, for instance,
by an external perturbation. We also show that under non-
aging conditions our model leads to the expected linear
growth hnðtÞi ’ t, and in the intermediate case we observe
power-law scaling for hnðtÞi. Our model provides an intui-
tive mesoscopic approach to the superslow dynamics in
aging systems.

We define the dynamics of the system through a series
nðtÞ of consecutive states, each of which is characterized
by its own local clock and all being initiated globally at
time t ¼ 0. The clocks’ ticks occur with random time
intervals �, which are drawn from a waiting time density
c ð�Þ (see Fig. 1). If the system arrives at state n� 1 at a
later time t0, then it is more likely to encounter a large �
and, therefore, also typically has to wait a correspondingly
longer time �1 before a transition to state n occurs.
For c ð�Þ ’ ��1�� with 0<�< 1, no typical time scale
h�i ¼ R1

0 �c ð�Þd� exists, and we find Eq. (1), whose

scaling with the counting initiation time t0 manifests the
nonstationarity of the process [17]. Equation (1) is the
central result of this work, but we also obtain hnqðtÞi for
�> 1. Moreover, we find the probability distribution hnðtÞ
to be in state n at time t given that the counting of
transitions (from state 0) began at t ¼ t0.

A simplistic picture for our model is to envision a hitch-
hiker traveling through a series of towns. In each town,
traffic starts in the morning, and friendly drivers (persons
willing to pick up our hitchhiker) appear at random inter-
vals � governed by c . The hitchhiker typically arrives to a
new town in between two friendly drivers showing up, and
the delay time �1, i.e., the time the hitchhiker actually has to
wait until the next ride, is governed by the forward waiting
time density c 1 [18]. The probability density c 1 is far from
trivial: For heavy-tailed c ð�Þ it displays aging; see below.
In this context it is interesting to note that indeed arrival
times of English trains, but also response times in human
communication patterns, and bursting in queuing models
are power-law distributed [19–21].

A more physical picture for our model is defect-
mediated crack-type propagation in a solid. Imagine a
crack that grows in discrete steps ( . . . ; n� 1; n; . . . ), the
growth being triggered by the arrival of a diffusing defect
at the neighboring site of the crack’s tip, similar in spirit to
Glarum’s defect diffusion model [22]. The global initiation
in this system occurs when the external stress is applied.
Possibly, similar scenarios may apply in the above-
mentioned examples of stick-slip dynamics [3] and density
relaxation of grains by tapping [4].

We now formulate our process mathematically. To that
end, we define the probability density �nðtÞ for the system
to arrive at state n at time t, which fulfills the convolution

�nðtÞ ¼
Z t

0
�n�1ðt0Þc 1ðt� t0jt0Þdt0;

�0ðtÞ ¼ �ðt� t0Þ;
(2)

where c 1ð�1jt0Þ is the probability density of the triggering
delay time (forward waiting time) �1 that the system
spends in a new state after having arrived there at time t0.
Equation (2) expresses the fact that the probability to arrive
at state n in a time interval [t, tþ dt] is the probability of
having arrived to the state n� 1 at some earlier time
interval [t0, t0 þ dt0] with t0 < t multiplied by the proba-
bility of a triggering event occurring in [t, tþ dt], where t0
lies anywhere between 0 and t. Now, if c ð�Þ ’ ��1��

with 0<�< 1 (�> 1 is discussed below), then the
probability density c 1 of forward waiting times �1 is
known from continuous time random walk (CTRW)
theory, namely [23–25],

c 1ð�1jt0Þ ¼ sinð��Þ
�

t0�

��1 ðt0 þ �1Þ : (3)

This quantity explicitly depends on the arrival time t0 and
thus mirrors the aging property of the process: While at
small t0, we observe the scaling c 1 ’ ��1��

1 in analogy to
the regular waiting time density c ð�Þ, at later t0 we have to
wait for a longer �1 for the next transition event. This
intuitively corresponds to the observation of a random
walk process governed by the waiting time density c ð�Þ ’
��1�� with 0<�< 1: When the process evolves (i.e.,
becomes older), due to the scale-free nature of c we see
increasingly longer waiting times. The later we arrive at a
new state (growing t0), the longer the typical current tick-
tick waiting time � will be, and thus �1 grows longer as the
overall process develops.
We note that our model is in stark contrast to standard

CTRW theory where the waiting time is reset (renewed)
after each transition [26,27]; i.e., the renewals are an
intrinsic property of the process. Here we update each state
locally starting at t ¼ 0, and each local clock is renewed
after a tick. However, the overall process effectively cou-
ples all the local clocks, since after a transition to a new
state n (i.e., a tick at state n� 1) the process needs to wait
for the next local tick (at n). This bestows the nonrenewal
property of the overall process.
Finally, we obtain the probability hnðtÞ to find the system

in state n at time t. It corresponds to the probability of
having arrived at n at t0 < t and no transition having
occurred since:

hnðtÞ ¼
Z t

0
�nðt0Þ

Z 1

t�t0
c 1ð�1jt0Þd�1dt0: (4)

Equations (2)–(4) define the problem we solve here.
To proceed, it is convenient to employ the technique of

Mellin transforms [28]. With GðxÞ�xc 1ðx�1j1Þ�ðx�1Þ,
where �ðxÞ is the unit step function, Eq. (2) becomes
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�nðtÞ ¼ 1

t

Z 1

0
�n�1ðt0ÞGðt=t0Þdt0: (5)

Using the definition of Mellin transforms fðpÞ ¼R1
0 tp�1fðtÞdt, where p is the Mellin variable, along with

the Mellin convolution theorem [28] we obtain from
Eq. (5) that �nðpÞ ¼ Gðp� 1Þ�n�1ðpÞ, to which the

solution is �nðpÞ ¼ ½Gðp� 1Þ�ntp�1
0 [here we used

�0ðpÞ ¼ tp�1
0 ]. The Mellin transform of Eq. (4) is hnðpÞ ¼

�nðpþ 1Þ½GðpÞ � 1�=p, and therefore

hnðpÞ ¼ tp0GðpÞn½GðpÞ � 1�=p: (6)

This is an exact solution in Mellin space for the sought-
after quantity hnðtÞ used in the following.

While no simple expression exists for the exact hnðtÞ,
we can obtain all moments of hnðtÞ in the limit of long
times t. Expanding GðpÞ for small p to second order, for
0<�< 1, we obtain the qth order moments [12]

hnqðpÞi� �ðqþ1Þtp0
�qð�pÞqþ1

�
1þp

2
½��q�2=��

�
; p!0�

(7)

in Mellin space, with � ¼ ��0ð�Þ=�ð�Þ � 	 and �2 ¼
��2=6þ @2 ln�ð�Þ=@�2. Here, �ðzÞ is the complete �
function, and 	 ¼ 0:5772 . . . denotes Euler’s constant.
Inverting the Mellin transform, we retrieve Eq. (1) at
long t. Thus the leading order behavior of the first
two moments follows hnðtÞi � lnðt=t0Þ=� and hn2ðtÞi �
ln2ðt=t0Þ=�2. This shows that the triggering process
considered here leads to a nontrivial logarithmic time
evolution for heavy-tailed forms of c ð�Þ. The logarithmi-
cally slow dynamics contrasts the case �> 1 for which
hnqðtÞi grows as a power law (shown below). In Fig. 2, we

compare our analytical result (7) for hnðtÞiwith simulations
[29] for the concrete form c ð�Þ ¼ ���0 =ð�þ �0Þ1þ�. As

can be seen, the simulations agree excellently with Eq. (1),
except for � ! 1. The inset in Fig. 2 shows that the
mismatch is due to the fact that t0 is not sufficiently large
(i.e., not much larger than �0) and the distribution
c 1ð�1jt0Þ thus has not reached its asymptotic form (3).
The q dependence of the dominant term in Eq. (1)

corresponds to a � function for the limiting distribution.
This means that the standard deviation versus the mean in
our model becomes increasingly small for long times and
that the dynamics becomes effectively deterministic.
Indeed, dividing the variance by the mean we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihn2ðtÞi � hnðtÞi2p
hnðtÞi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

� lnðt=t0Þ

s
; (8)

as is nicely corroborated by simulations of this ratio in
Fig. 3. Equation (8) contrasts the behavior of the position
coordinate in biased subdiffusive CTRW processes where
the ratio above tends to a constant [26].
What about the behavior when �> 1? In this case,

c 1ð�1jt0Þ has a finite limit independent of t0 and is
given by c 1ð�1Þ ¼

R1
�1
c ð�0Þd�0=h�i [30], where h�i ¼R1

0 �c ð�Þd�. Assuming the form c ð�Þ � A=��þ1 for large

�, one obtains c 1ð�1Þ � ð�� 1ÞA=½h�i��1 �. We find two
distinct regimes for the cases 1<�< 2 and �> 2. For
1<�< 2 the system goes through the series of states nðtÞ,
as a regular renewal process with power-law waiting times
of index �� 1. The number of states the system passes in
this case thus has the moments [25,31]

hnqðtÞi� �ðqþ1Þ
�ðqð��1Þþ1Þ

� h�it��1

�ð2��ÞA
�
q / tð��1Þq: (9)
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FIG. 2 (color online). Average state number hnðtÞi versus
time t. Symbols represent simulations for various �, as indi-
cated. Dashed lines show the asymptotic behavior, Eq. (1) for
q ¼ 1. In the simulations we used t0 ¼ 103 and �0 ¼ 1. Results
are ensemble averaged over 107 runs, respectively. Inset:
Convergence to the theoretical results with t0 for � ¼ 0:75.
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FIG. 3 (color online). Standard deviation versus mean as a
function of process time. Simulations (symbols) are compared
to the asymptotic results for large t [Eq. (8), dashed lines].
Parameters used: t0 ¼ 103, �0 ¼ 1, averaged over 7� 105 simu-
lation runs.
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Here we notice that the mean hnðtÞi ’ t��1 increases
sublinearly rather than logarithmically as in the case
0<�< 1. Moreover, we find that the fluctuations grow
as fast as the mean. For �> 2 we put � ! 2 and
�ð2� �ÞA ! h�2i=2, so that we obtain

hnqðtÞi �
�
2h�it
h�2i

�
q / tq: (10)

In this case, in particular, the mean grows linearly with
time. Interestingly, just as for the case 0<�< 1 (but in
contrast to the regime 1<�< 2), the deviations vanish
relative to the mean; i.e., the long-time dynamics is effec-
tively deterministic.

We now turn our attention to the full distribution hnðtÞ
for the case 0<�< 1. To that end, we need to evaluate the
inverse Mellin transform of Eq. (6). In the Supplemental
Material [12], we derive the approximate form

hð1Þn ðtÞ ¼ hð0Þn ðtÞ
�
1þ �2 þ�2

2�
ffiffiffiffiffiffiffiffiffi
�2n

p yþ 
3n

6ð�2nÞ3=2 ðy
3 � 3yÞ

�
;

(11)

where y ¼ ½lnðt=t0Þ ��n�=
ffiffiffiffiffiffiffiffiffi
�2n

p
and

hð0Þn ðtÞ ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2n

p exp

�
�½lnðt=t0Þ ��n�2

2�2n

�
: (12)

The distribution hnðtÞ, for fixed (logarithmic) time, is thus a
slightly skewed Gaussian in the n domain. In Fig. 4, we

compare the result hð1Þn ðtÞ with simulations, demonstrating
good agreement for its dominating part.

In particle tracking assays, single trajectories are
routinely measured and analyzed [32]. We therefore also
consider the time average for a single realization of nðtÞ

defined as nð�Þ¼ðt2���t1Þ�1
Rt2��
t1 ½nðtþ�Þ�nðtÞ�dt,

where the observation time of the trajectory is from t1 to
t2 and � is the lag time. Here we consider only the heavy-
tailed case 0<�< 1. Averaging over many trajectories,
the dominant behavior at t1, t2 � t0 becomes�

nð�Þ
	
��

1=�

t2 � t1
ln
t2
t1

(13)

for � � t2 � t1. The linear behavior in � contrasts the
logarithmic time dependence of hnðtÞi. This discrepancy
between ensemble and time average demonstrates that the
process considered here is weakly nonergodic [32–34].
Interestingly, while the duration t2 � t1 and the aging
time t1 factorize from the lag time (�) dependence similar
to CTRW processes [35], the times t1 and t2 enter in terms
of the nontrivial combination ðlnt2 � lnt1Þ=ðt2 � t1Þ.
We finally ask whether we can understand the logarith-

mic time evolution for hnðtÞi. We show in the Supplemental
Material [12] that Eq. (5) can, after minor modifications,
be interpreted as the probability density for products of
independent random variables. The logarithmic time
evolution follows from the fact that the product of many
random numbers approaches the log-normal distribution.
Our work therefore connects to the large number of
scientific fields where this distribution appears; see the
review [36].
In summary, we developed a generic stochastic frame-

work for systems exhibiting logarithmic time evolution.
Our system is initiated globally by some external pertur-
bation (stress, incipient light, etc.), but transitions occur by
updates of local clocks. Each transition to the following
state is thus timed according to the first waiting time.
Consequently, the resulting process is ‘‘superaging’’ in
the sense that at each step a local aging period passes.
As a result, we obtain a logarithmic time evolution for
power-law forms of the clock-update distribution c .
Examples of logarithmically slow dynamics are found

in biological, mechanical, and electrical systems. No
universal framework has yet been put forward, only certain
classes of systems. In Refs. [7,8], the logarithm appears
due to a specifically chosen spectral density, whereas in
Ref. [6] it stems from assumed relations between macro-
scopic observables and in Ref. [10] from a complex
interplay between hard-core repulsion and short-range
attraction. The logarithmic rate of change of network con-
nectivity in Ref. [14] follows by construction, and an
effective power-law distribution of potential barriers leads
to Sinai diffusion [15]. Finally, record statistics is an
extreme value problem where the logarithmic time evolu-
tion occurs, since breaking records is (usually) easy in the
beginning and becomes increasingly harder as time goes by
[16]. In this work, we explore a generic transition process
between aging states, in which the logarithmic dynamics is
an emergent property. We solved this minimal model
exactly and showed results for the temporal distribution

0 15 30
0

0.03

0.06

0.09

FIG. 4 (color online). Probability distribution to find the sys-
tem in state n at time t. Lines: Analytical results from Eqs. (11)
and (12). Circles: Simulation results, averaged over 7� 105

runs. Parameters used: t ¼ 7:9� 1012, t0 ¼ 103, �0 ¼ 1, and
� ¼ 0:25.
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to reach a state n as well as the moments hnqðtÞi. Because
of the generic yet simple nature of this model, we are
confident that it will be applied in many scientific fields.
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