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Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial

enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction

efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a

distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of

pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this

transition arises from the stochastic nature of molecular reactions and diffusion.
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To efficiently catalyze multistep biochemical reactions,
sets of enzymes have evolved to function synergistically.
Cells not only keep concerted control over the concentra-
tions and activities of enzymes in the same pathway, but
often also arrange them in self-assembled multienzyme
complexes [1]. Apart from the large molecular machines
(polymerases, ribosomes, spliceosomes), one of the best-
studied natural multienzyme complexes is the cellulosome,
a complex where up to 11 different enzymes are arranged
on a noncatalytic scaffolding protein [2]. This complex is
assembled extracellularly by anaerobic bacteria to effi-
ciently break down cellulose, the most abundant organic
material on the planet. Similarly, enzyme complexes are
used for intracellular metabolism [3]. However, neither the
precise consequences of putting enzymes together into
complexes are well understood, nor the degree to which
complex formation confers a functional advantage in
each case [4–7].

It has long been thought that physical association
between collaborating enzymes might increase the effec-
tive reaction flux, minimize the pool of unwanted inter-
mediate products, allow coordinate regulation by a single
effector, and reduce transient time scales [8,9]. However,
while enzymatic activity has been studied for over a cen-
tury, suitable techniques to characterize such effects quan-
titatively have become available only recently. On the one
hand, single-molecule enzymology allows us to monitor
[10] and manipulate [11] the activity of individual enzyme
molecules. On the other hand, enzyme molecules can
be positioned with nanometer precision in artificial
systems using ‘‘single-molecule cut-and-paste’’ [12] on
two-dimensional surfaces or along one-dimensional chan-
nels, and with DNA origami structures even in three
dimensions [13,14]. These experimental developments
call for a theoretical analysis of the effects of spatial
proximity and arrangement of enzymes, to uncover the
principles for the design and optimization of multienzyme
systems. Such principles could be applied to bioengineer
systems that control biochemical reactions at will, such as

for the production of drugs or biofuels [15,16]. Related
issues also arise in the context of signaling proteins [17];
however, the functional criteria for the optimization of
signaling systems are likely different [18,19].
Here, we ask under which conditions it is beneficial to

localize enzymes rather than distribute them. Furthermore,
what is the optimal arrangement and how does it depend on
the system parameters? We base this study on simple-
reaction diffusion models, which permit rigorous quantita-
tive analysis, and assume the steady-state reaction flux is
the single critical system property. Interestingly, this
already leads to rich physical behavior, with a sharp tran-
sition from a regime in which it is optimal to cluster
downstream enzymes in the vicinity of upstream enzymes,
to a regime in which an extended enzyme profile generates
a higher reaction flux. This behavior, which we explain by
analyzing the ‘‘enzyme exposure’’ of molecules diffusing
in the system, is a result of the stochastic nature of the
reactions and diffusion of single molecules.
Clustered enzymes.—That colocalizing enzymes within

the same pathway might indeed improve the efficiency of
converting a substrate S into a final product P can be seen

by considering a two-step reaction, S!E1
I!E2

P, as a minimal
model where production of P via an intermediate I is
catalyzed by the enzymes E1 and E2. Let us consider an
E1 molecule (or a small cluster thereof) as a local source of
I molecules and describe the local arrangement of E2

enzymes relative to E1 by the distribution eðrÞ, normalized
such that ET ¼ R

eðrÞdr is the total number of E2 mole-
cules per E1 center. To determine the efficiency of an
enzyme arrangement eðrÞ, we need to describe the
reaction-diffusion dynamics of the density �ðr; tÞ of inter-
mediates. We assume simple diffusion, with coefficient D,
and standard Michaelis-Menten kinetics [20] for the enzy-
matic reactions, with catalytic rate kcat and Michaelis
constant KM for E2. In the low-density regime, where the
reaction term becomes linear, we then have

@t�ðr; tÞ ¼ Dr2�ðr; tÞ � �eðrÞ�ðr; tÞ; (1)
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with � ¼ kcat=KM measuring the enzyme efficiency.
Intermediates will either react to form product or will be
lost, either directly to the extracellular space (for extrac-
ellular enzymes) or across the cell membrane. We can
implement this possible loss via an absorbing boundary
condition, �ðr ¼ R; tÞ ¼ 0, on a sphere with radius R that
may be taken to infinity. On the other hand, intermediates
are constantly generated by E1 at the origin, with an
average flux that we denote by J1, yielding the source
boundary condition �Dð4�r2@r�Þr¼0 ¼ J1. In the result-
ing nonequilibrium steady-state �ðrÞ, product is generated
at the rate

J2 ¼ �
Z
r<R

eðrÞ�ðrÞdr: (2)

Let us assume, for the moment, that enzyme E2 is spread
over a spherical shell with radius r0 < R. We then find a
total product flux of

J2 ¼ J1

1þ 4�DRr0
ET�ðR�r0Þ

!R�r0 J1

1þ 4�Dr0
ET�

: (3)

This result indicates that reducing r0—arranging the E2

molecules close to the E1 center—can dramatically
increase the flux if loss of intermediate products is a
concern. Whether this effect is biologically relevant cru-
cially depends on the characteristic length scale rc ¼
ET�=4�D, where J2 begins to saturate. Enzyme efficien-
cies can be up to �� 108 M�1 s�1 (although superefficient
enzymes can achieve �� 1010 M�1 s�1 [21]), while
biomolecular diffusion constants are typically larger than
D� 10 �m2 s�1, such that with ET � 10 E2 molecules per
E1 center, rc is at most of nanometer scale, comparable to
the size of enzymes. Thus even our simplified model,
which does not include interenzyme interactions such as
direct channeling [22], suggests that in realistic biochemi-
cal settings, J2 will be strongly dependent on the distance
between enzymes down to the scale of their own size.

On a microscopic scale, the simple reaction-diffusion
description we have used above will break down, since
steric effects and the specific enzyme structure become
important. Nevertheless, we can exploit the coarse-grained
model to address more general questions on a mesoscopic
scale. In particular, it is intriguing to ask whether colocal-
ization is in fact the optimal enzyme arrangement, and
whether the behavior will change qualitatively when the
enzyme kinetics become nonlinear.

Clustered vs uniform arrangements.—Let us focus on the
one-dimensional version of Eq. (1). This is not only a
natural starting point for a theoretical study, but also rele-
vant experimentally, e.g. for ‘‘molecular factories’’ in quasi-
one-dimensional channels within future ‘‘lab-on-a-chip’’
devices. Specifically, we consider the one-dimensional
steady-state �ðxÞ of a finite system, x 2 ½0; L�, with
source/sink boundaries, �Dð@x�Þx¼0 ¼ J1 and �ðLÞ ¼ 0.
We compare different E2 enzyme distributions eðxÞwith the

same mean density �e ¼ L�1
R
L
0 eðxÞdx ¼ ET=L. The

behavior of the system is determined by the dimensionless
control parameter � ¼ � �eL2=D, which measures the rela-
tive importance of reactions and diffusion in shaping �ðxÞ.
When �< 1, the system is dominated by diffusion, as the
typical reaction time scale ð� �eÞ�1 is longer than the typical
diffusion time �L2=D to the absorbing boundary.
Conversely, for large �, reactions are fast compared to
diffusive escape. In the limit of � ! 1, J2 approaches J1
independent of the spatial arrangement of enzymes.
We first compare the reaction flux of clustered enzymes,

ecðxÞ ¼ �e�ðx=LÞ, and uniform enzymes, euðxÞ ¼ �e. As
shown in Fig. 1, the clustered configuration achieves a
larger flux for � & 9. Surprisingly, for larger �, the uni-
form configuration achieves a higher reaction flux. Thus
it is not always preferable to simply localize enzymes
where the concentration of intermediate is highest, which
always occurs at x ¼ 0. Rather, when reactions are fast
compared to diffusion, the intermediates can be consumed
more efficiently if E2 is uniformly distributed throughout
the system.
Enzyme exposure.—To examine the origin of this tran-

sition, we consider the fate of a single I molecule intro-
duced into the system at t ¼ 0. Whether it will have
reacted by time T depends on the concentration of E2

enzymes, eðxðtÞÞ, to which it has been exposed along its
trajectory xðtÞ: the probability that it has not reacted is
exp½��

R
T
0 eðxðtÞÞdt�. Therefore, the probability of escap-

ing the system can be decomposed into the likelihood of
particular trajectories through the system, and the proba-
bility of no reaction occurring along each trajectory.
Indeed, the relative likelihoods of escape and reaction
can be recaptured if, rather than assuming that I is con-
sumed by the enzyme, we instead propagate a diffusive
trajectory until it hits the absorbing boundary at time �, and
subsequently determine whether or not a reaction would
have occurred based on the rescaled total enzyme exposure
E ¼ DðL2 �eÞ�1

R
�
0 eðxðtÞÞdt and reaction probability

prðEÞ ¼ 1� expð��EÞ.
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FIG. 1 (color online). Comparison of the reaction flux achieved
by different enzyme profiles. A transition occurs at �� 9
between regimes in which clustered and uniform enzyme profiles
achieve a higher reaction flux. The optimal mixed enzyme
distribution [Eq. (5) with f ¼ ��1=2, dashed black line] achieves
a still higher J2 for intermediate values of �.
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Given the stochasticity of diffusion, a given enzyme
arrangement eðxÞ will lead to a characteristic distribution
of enzyme exposure, PðEÞ. For uniformly distributed
enzymes, E is simply proportional to the time spent in
the system, and PðEÞ is therefore set by the distribution of
escape times at the absorbing boundary x ¼ 1 for a diffus-
ing particle (see the Supplemental Material [23]),

PuðEÞ ¼
X1
n¼0

�ð�1Þnð2nþ 1Þe��2ðnþ1=2Þ2E: (4)

For a clustered configuration the appropriate distribution is
found to be PcðEÞ ¼ expð�EÞ (see the Supplemental
Material [23]). Importantly, these distributions are inde-
pendent of the reaction rate �, which enters into the
reaction flux only via the reaction probability prðEÞ, which
is in turn independent of the spatial arrangement of
enzymes. Specifically, the reaction flux is given by J2 ¼
J1

R1
0 PðEÞprðEÞdE. Thus it is the interaction of these two

distributions that determines which enzyme profile is pref-
erable for a given value of �.

Figure 2 rationalizes the transition observed in Fig. 1.
When � � 1, such that prðE & 1Þ is small, the majority of
reaction events correspond to trajectories with large values
of E. Compared to the uniform configuration, for which
PuðEÞ � expð��2E=4Þ for large E, the clustered configu-
ration places more probability weight in the large-E tail of
PcðEÞ, and thus achieves a higher reaction flux when � is
small. In the opposite limit of large � � 10, only those

trajectories with extremely small values of E � 1 have a
significant probability of not reacting. Thus the uniform
enzyme profile, for which PuðE ! 0Þ ! 0, becomes pref-
erable. The critical value of the transition, � � 9, marks
the point at which the reaction probability becomes large in
the vicinity of the peak of PuðEÞ.
Optimal profiles.—We have thus far compared only

uniformly distributed and clustered configurations.
However, it may be that another enzyme profile is able to
achieve a reaction flux which is higher still. We therefore
investigated what is the optimal enzyme distribution eðxÞ,
for fixed �e, that maximizes the reaction flux J2 (or alter-
natively, minimizes leakage J1 � J2). A direct analytic
optimization of J2 over eðxÞ is not possible because of
the nontrivial dependence of �ðxÞ on eðxÞ. We therefore
studied the optimization of J2 numerically on a discretized
interval (see the Supplemental Material [23]).
These data show that for small �< 1 the clustered

configuration, with all enzymes colocalized with the
source, is the optimal arrangement. Interestingly, the opti-
mal profile undergoes a transition, distinct from that dis-
cussed above, at the critical value � ¼ 1. For �> 1, in the
optimal profile only a fraction of the available enzymes
were clustered; the remaining enzymes were distributed
approximately uniformly over an extended region with the
enzyme density in this region equal to �e, as shown in Fig. 3.
Motivated by these numerical results, we studied

enzyme profiles of the form

eðxÞ ¼ �e

�
f�

�
x

L

�
þ�

�
1� f� x

L

��
; (5)

where �ðxÞ is the Heaviside function, and f is the fraction
of enzymes that are clustered. We found that for this
restricted class of profiles, the optimal profile indeed

undergoes a transition from f ¼ 1 for � � 1 to f ¼
��1=2 for �> 1. Examining the scaling of the fraction of
enzymes that are clustered in the numerically optimized
profiles, we find excellent agreement with this � scaling
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FIG. 2 (color online). Schematic depiction of the transition
from a favorable clustered configuration (� � 1, left) to the
regime in which the uniform profile is preferable (� � 1, right).
Middle: when enzymes are clustered at x ¼ 0 PðEÞ has excess
probability, compared to when enzymes are uniformly distrib-
uted, at small and large values of E. Bottom: the reaction flux is
given by the integral of PðEÞprðEÞ. For � � 1 the extra proba-
bility in the large-E tail of PðEÞ in the clustered configuration
contributes more to J2 than probability in the region E < 1.
When � � 1 only trajectories with E � 1 are subject to a low
reaction probability, leading to a lower J2 when enzymes are
clustered.
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FIG. 3 (color online). Optimal enzyme density distribution for
different values of �. Plotted profiles are the result of numerical
optimization (see the Supplemental Material [23]) after 4� 104

iterations with a lattice of 100 sites. Inset: the fraction of
enzymes f located at the first lattice site in the numerically-
optimized enzyme profile scales as ��1=2 for �> 1.
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(see Fig. 3 inset). The corresponding reaction flux tracks
the envelope of the curves for the clustered and uniform
configurations as � is varied (Fig. 1, dashed line).

The two distinct qualitative features of the optimal
profile—the peak at x ¼ 0 and the sharp decrease at

x ¼ Lð1� ��1=2Þ—can be related to geometry of the
system: enzymes cluster in the vicinity of the source and
are excluded from the region nearest to the absorbing
boundary. The distance from the end of the uniform
enzyme domain to the boundary at x ¼ L scales with the
typical diffusion length of substrate molecules in an

enzyme density �e, which is �L��1=2. If the enzyme con-
centration were to be uniform, eðxÞ ¼ �e, substrate mole-
cules that approach within this distance of the absorbing
boundary have a high probability of diffusing out of the
system rather than reacting. Any enzymes placed in this
area contribute little to the reaction flux and can be used
more effectively if relocated closer to the source.

We characterized PðEÞ for mixed enzyme profiles of the
form Eq. (5) by numerically sampling the enzyme expo-
sure of continuous-time random walk trajectories on a
lattice until their escape at x ¼ L. The resulting distribu-
tions for different values of f are shown in Fig. 4. In the
extreme cases of f ¼ 1 and f ¼ 0, the numerical results
reproduce the analytic results of PcðEÞ and PuðEÞ above.
At intermediate values of f, PðEÞ retains a more pro-
nounced large-E tail than PuðEÞ, while still reducing the
probability of extremely small E values relative to PcðEÞ.
As � is increased, the relative importance of these two
features is reduced and increased, respectively. Thus the
optimal PðEÞ becomes more sharply peaked, correspond-
ing to a smaller f.

So far we have considered only the case of linear reac-
tion kinetics. In the nonlinear regime of the Michaelis-
Menten kinetics, it is no longer possible to consider
individual substrate trajectories independently since the
reaction probability of a particular molecule depends on
not only the local enzyme concentration but also the sub-
strate density. Nevertheless, a qualitatively similar transi-
tion of the optimal enzyme distribution from clustered to
distributed will occur provided the enzyme concentration

is not so low as to be saturated throughout the entire
system, in which case the reaction current becomes inde-
pendent of enzyme positioning.
Discussion.—In our model enzymatic pathway, the ulti-

mate fate of each intermediate (I) molecule is either to
react to product or to escape. For a given enzyme arrange-
ment, the dimensionless parameter � controls the relative
likelihood of these outcomes. Conversely, for each value of
� there is an optimal enzyme arrangement that minimizes
the loss of intermediates. In the small-� regime, where the
reaction is slow and escape is likely, the best enzyme
arrangement is a tightly clustered one. As � is increased,
the system moves into the reaction-dominated regime and
it becomes preferable to relocate some of the available E2

enzymes away from the source. The transition of the
optimal profile takes place at ��1. With a system size
of L�100 nm,� values in the range of 0.01–100 should be
achievable in synthetic systems [12–14]. Thus it should
be possible to directly test our results experimentally.
Intuitively, for large �, the more distant E2 molecules

may be interpreted as ‘‘backup enzymes’’ intended to catch
the fraction of I molecules that were able to diffuse away
from the cluster. The cost of removing some enzymes from
the cluster is small since there remains a high probability of
reaction for intermediates which spend a long time in the
vicinity. Spreading these enzymes provides a larger benefit
by recouping some of the escaped I molecules. Indeed, the
optimal enzyme arrangement for �> 1 is akin to a bet-
hedging strategy, in the sense that the optimal placement
for multiple E2 molecules is not to cluster them all at the
position where a singleE2 would do best, but instead hedge
bets on the stochastic motion of their substrate by carefully
distributing them.
Similar effects will also occur in systems with different

geometries, including in higher dimensions. We have intro-
duced the integrated ‘‘enzyme exposure’’ as a quantitative
tool to characterize the effects of different enzyme arrange-
ments. Importantly, the optimal enzyme profile does not
necessarily maximize the average enzyme exposure (see
Fig. 4 inset). Rather, it is the matching between the shape
of the enzyme exposure distribution and the reaction
probability that is key. While properties of diffusion such
as recurrence change with dimension, the qualitative
picture that clustered and distributed enzymes lead, respec-
tively, to monotonically decaying and sharply peaked
enzyme exposure distributions remains unchanged. There-
fore the underlying physics of the transitions described is
generic, although the magnitude of the effects will vary
with the specific system. The concept of enzyme exposure
provides a general framework for understanding the behav-
ior of many different scenarios.
We have seen that the optimal enzyme distribution is

determined by the distributions of timing of reaction and
diffusion events. These are intrinsic single-molecule prop-
erties. Thus, we expect that the optimal enzyme profile
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would remain unchanged if we considered instead discrete
substrate and enzyme molecules. The only difference is
that for finite numbers of enzyme molecules, eðxÞ cannot
be chosen arbitrarily but instead only certain discrete
values are permitted. Thus PðEÞ cannot be varied contin-
uously, but rather one of a specific ensemble of allowed
distributions must be chosen. While this will not change
the qualitative behavior of the optimal profile as the system
parameters are varied, it may quantitatively alter its shape
for given parameter values. We leave this as a topic of
future studies.
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