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A statistical mechanical theory is presented to predict the effects of macromolecular crowding on

protein association equilibria, accounting for both excluded volume and attractive interactions between

proteins and crowding molecules. Predicted binding free energies are in excellent agreement with

simulation data over a wide range of crowder sizes and packing fractions. It is shown that attractive

interactions between proteins and crowding agents counteract the stabilizing effects of excluded volume

interactions. A critical attraction strength, for which there is no net effect of crowding, is approximately

independent of the crowder packing fraction.

DOI: 10.1103/PhysRevLett.110.208102 PACS numbers: 87.15.km, 64.75.Yz, 87.14.E�, 87.15.A�

Protein-protein interactions are important in many

essential biological functions, such as transcription, trans-

lation, and signal transduction [1]. A lot of progress has

been made in understanding protein association in dilute

solution via experiments and simulations [2–5]. Cells, on

the other hand, contain various macromolecules, e.g.,

DNA, RNA, proteins, organelles, etc., which constitute

up to 40% of the cell volume [6]. It is thus crucial to relate

in vitro experimental or simulation results to those in a

crowded cellular environment [7–13].
Several experimental studies have been performed

to understand protein-protein interactions in a crowded

environment [14–24]. Most attention has been paid to the

steric excluded volume effects of inert crowding agents on

the formation of protein complexes [25–27]. Very recent

studies have also started to probe the effects of attractive

interactions between proteins and crowders on protein

association [28–31]. These studies have highlighted the

importance of accounting for enthalpic effects arising

from attractive interactions in addition to commonly

invoked excluded volume effects. It was found that the

enthalpic effects can actually increase the binding free

energy (thereby destabilizing the bound complex) in

contrast to predictions based on available theoretical

models that can only capture entropic effects.
Most theoretical models of crowding are based on the

scaled particle theory (SPT) of hard-sphere fluids [32] or

its modified versions and have been applied to interpret

experimental and computational results with varying suc-

cess. The failure of these models in several situations

highlights an important role played by attractive crowder-

protein interactions. In our earlier work [30], we proposed

an ad hoc mean-field expression to fit our simulation data

to provide some insight into the role of attractive crowder-

protein interactions in destabilizing protein association.

However, there is a need for a comprehensive quantitative

theory that can describe the effects of repulsive as well as

attractive crowder-protein interactions on the protein-
association equilibria.
In this Letter, we present a theory that can quantitatively

predict the effects of macromolecular crowding on the
protein association equilibria accounting for both repulsive
and attractive crowder-protein interactions. The statistical
mechanics and thermodynamics of a hard-sphere fluid are
adapted to yield an approximate analytical expression for
the protein-binding free energy in the presence of spherical
crowders. Extensive replica exchange Monte Carlo
(REMC) simulations have been performed on two distinct
protein complexes to test this theory. We find that the
theory is in excellent agreement with simulations over a
wide range of crowder packing fractions and crowder-
protein interactions. The theory identifies the region in
parameter space (entropy-enthalpy compensation line in
a two parameter plane) separating the entropically stabi-
lized area versus the enthalpically destabilized one.

FIG. 1 (color online). Schematic diagram of the thermody-
namic cycle for the formation of the Ubq/UIM1 complex. The
ubiquitin (left column) is shown in blue while UIM1 (middle
column) is shown in red.
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Theoretical development.—Figure 1 illustrates a thermo-
dynamic cycle that describes a change in the binding free
energy �Fbind of two proteins due to the presence of
crowding molecules. This change ��Fbind can be
expressed as the difference in the binding free energy in
the absence and presence of crowders and is given by

��Fbindð�Þ ¼ �Fbindð�Þ � �Fbindð� ¼ 0Þ
¼ �Fcrowd

AB � �Fcrowd
A � �Fcrowd

B ; (1)

where �Fcrowd
� ð�Þ, � 2 ½A; B; AB� is the solvation free

energy of a protein (or complex) � in a crowded solution
with crowding packing fraction �. (For brevity, we will
omit the superscript ‘‘crowd’’ below.)

To obtain an expression for �F�ð�Þ in Eq. (1) for a
protein or complex �, let U�ðr;�Þ ¼ P

i2�uiðriÞ be the
overall interaction between a protein � and a crowder,
where r is the distance between the center of mass of the
protein and the crowder and � is the orientational degree
of freedom, while ui is the interaction between an atom
(or residue) i of the protein � and the crowder. For a
general Lennard-Jones (LJ)-type potential for ui, it is
reasonable to assume that for a given�, U�ðr;�Þ exhibits
a minimum ��m� ð�Þ at r ¼ rm� ð�Þ. Following the Weeks-
Chandler-Andersen (WCA) theory, we then decomposeU�

into the repulsive and attractive parts as

U�;repðr;�Þ ¼
�
U�ðr;�Þ þ �m� ð�Þ; r < rm� ð�Þ;
0; otherwise;

U�;attðr;�Þ ¼
���m� ð�Þ; r < rm� ð�Þ;
U�ðr;�Þ; otherwise:

(2)

The solvation free energy �F�ð�Þ of the protein in a
crowded solution can then be divided into two parts as

�F�ð�Þ ¼ �F�;repð�Þ þ �F�;attð�Þ; (3)

where �F�;repðattÞ is the contribution from the repulsive

(attractive) interaction, respectively.
The repulsive contribution �F�;rep is obtained by

adopting the SPT. The SPT provides the free energy for
solvating a hard sphere of radius R� in a bath of hard-
sphere particles of radius Rc as

��F�;rep ¼ ð3yþ 3y2 þ y3Þ ~�þ ð4:5y2 þ 3y3Þ ~�2

þ 3y3 ~�3 � lnð1��Þ; (4)

where � ¼ 1=kBT, ~� ¼ �=ð1��Þ, and y ¼ R�=Rc. But
can we represent an anisometric protein with soft-core
protein-crowder interactions as a hard sphere with an
appropriate radius R� to capture the protein’s solvation
behavior accurately? Here we use the Boltzmann criteria
to define R� as

4�

3
ðR� þ RcÞ3 ¼

Z

U�;rep�fkBT
r2drd�; (5)

where the right-hand side represents the volume encompassed
by the condition U�;repðr;�Þ � fkBT. Here, we use f ¼ 2,

which has been used successfully in previous studies [33].

Using the thermodynamic perturbation theory approach,
the attractive contribution, �F�;att, can be expressed as

(up to the first order)

�F�;att � hU�;attirep ¼
Z

�U�;attðr;�Þg0ðrÞr2drd�; (6)

where � is the crowder number density related to �
via � ¼ �=ð4�R3

c=3Þ, and g0ðrÞ is the radial distribution
function of the hard-sphere crowders between a protein
and a crowder. Realizing that g0ðrÞ has a maximum gmax

0

at contact and then decays rapidly to unity, we
assume g0ðrÞ ¼ gmax

0 for r 2 ½rm�; rm� þ �Þ and 1 for r 2
½rm� þ �;1Þ with � ¼ ð21=6 � 1ÞRc ’ 0:12Rc [34]. We
then approximate Eq. (6) as

�F�;att � �� ���S�f�rþ ðgmax
0 � 1Þ�g; (7)

where ��� ¼ h�m� i� is the orientational average of �m� , S� ¼R½rm� ð�Þ�2d� is the surface area around the protein, and �r
is the attraction range. Note that here we assume �r � �.
To enhance the simplicity and practical value of our

theory, we use the Carnahan-Starling (CS) equation of state
for a hard sphere fluid to calculate gmax

0 . The CS equation

of state is known to reproduce the thermodynamic behavior
of hard-sphere fluids from dilute gas to near the freezing
transition. The CS expression for gmax

0 is given by

gmax
0 ¼ gmax

CS ð�Þ ¼ ð1��=2Þ=ð1��Þ3; (8)

and only depends on �. Note that the first term in
Eq. (7) gives a linear order in � while the term containing
gmax
0 yields higher order terms. Combining together

Eqs. (1), (3), (4), (7), and (8), one can easily obtain an
estimate of crowding induced change in the binding free
energy. Next, we test this theory against REMC simula-
tions of two protein complexes in a wide range of crowder
sizes, packing fractions, and interaction strengths.
Model and simulation details.—A residue-based coarse-

grained model is used to simulate protein-protein interac-
tions [35]. This transferable protein-protein interaction
model was shown to yield binding affinities and structures
for moderately to weakly interacting protein complexes in
accord with experiments [35,36]. Crowding agents are
represented by spheres interacting via a repulsive potential
urepðrÞ ¼ �rð 	r

r�2rcþ	r
Þ12, where 	r is the interaction range

set equal to 6 Å. As our protein-protein interaction model
only includes solvent (water) effects indirectly by account-
ing for it in the amino acid pair contact potentials, repulsive
crowder-crowder interactions essentially mean that
crowder-solvent interactions are assumed to be much
stronger (to keep crowders dispersed in solution). See the
Supplemental Material [37] for more details on the models
and simulation.
Results and discussion.—The spherical crowders inter-

act with each other via the distance-dependent soft repul-
sive potential given by urepðrÞ with a characteristic size rc
and �r ¼ 1:69kBT. To apply the SPT [Eq. (4)] for calculat-
ing the repulsive contribution of the binding free energy, it
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is necessary to obtain an effective hard-sphere radius for
such crowders. We define the effective hard-sphere radius
Rc of crowders by the condition urepð2RcÞ ¼ fkBT with the

same f as in Eq. (5). This yields Rc ¼ rc þ 
	r where


 ¼ 1
2 ½ð1:692:0 Þ1=12 � 1�. Note that although for �r ¼ 1:69kBT

one has Rc ’ rc; in general, Rc can be different from rc.
The effective packing fraction � is then given by � ¼
�0ðRc=rcÞ3 (see the Supplemental Material for �0 [37]).

Figure 2 presents the overall interaction between
the complex Ubq/UIM1 and a crowder at five different
orientations, illustrating a highly anisotropic and asym-
metric nature of the interaction. It shows that the
overall protein-crowder interaction follows the LJ shape
of the residue-crowder interaction of Eq. (1) of the
Supplemental Material [37] (see the solid curves), with a
minimum ��mð�Þ at r ¼ rmð�Þ for a given �. However,
the longer-distance tails are underestimated by the same
formula as evident in the inset.

The effective radius R� for a protein �, determined
by Eq. (5), depends weakly on rc and �c (see the
Supplemental Material [37]) as shown in Table I. For the
repulsive protein-crowder interactions, such effective radii
for proteins and complexes are sufficient to calculate the

change in the binding free energy ��Fbind via Eq. (4).
Figure 3 shows an excellent agreement between simulation
results (black squares) and the theory (black solid curves)
for the Ubq/UIM1 complex for different crowder sizes. As
previously reported by us and others, the binding free
energy decreases with increasing packing fraction � and
decreasing crowder size due to the excluded-volume effect.
Recent studies [28–30] have shown that attractive

protein-crowder interactions can destabilize protein asso-
ciation. Figure 3 shows that indeed, as the attraction
strength �c between a residue and a crowder increases,
the binding free energy also increases with the packing
fraction �. For example, for a moderate strength �c ¼
0:6kBT the change in the binding free energy at � ¼ 0:3
(close to the physiological condition) is up to about 4kBT
when the protein-crowder interaction switches from repul-
sive (black squares) to attractive (purple diamonds). For
reference, hard sphere fluids undergo a freezing transition
at � ¼ 0:49 and the random close packing is � ¼ 0:64
[38]. After including the volume occupied by the proteins,
it is clear that we are not simulating low crowder packing
fractions for which linear expansion in � can explain the
observed trends. In order to apply our theory [Eqs. (1)–(8)]
to describe the simulation data for various �c and rc, we
calculate the average attraction strength ��� and the surface
area S� for the individual proteins and the complex. Note
that ��� is proportional to �c while S� is independent of �c.
Table II shows these values for different rc. The theory
predictions are in excellent agreement with the simulation

data in which the attraction range �r ¼ 5 �A (close to	r) is
used for all the crowder sizes and attraction strengths.
To check whether the theory can be transferable to other

protein complexes, we calculate the binding free energies
for the Cc/CcP complex (total of 402 residues compared to
100 residues for the Ubq/UIM1 complex) as shown in
Fig. 4. With the same �r, the theoretical predictions agree
remarkably well with the simulation data.
The data in Figs. 3 and 4 show the competition between

entropic effects of the excluded volume and enthalpic
effects by attractive crowder-protein interactions. As pre-
viously suggested [29,30], the enthalpic effects can be
approximated to be proportional to the protein’s surface
areas and our theory here provides its concrete foundation
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FIG. 2. Plot of the overall interaction between the Ubq/
UIM1 complex and a crowder UUbq=UIM1 as a function of r for

different orientations �. The solid curves are obtained from
Eq. (1) of the Supplemental Material [37] with �c ¼ �mð�Þ and
	i ¼ rmð�Þ.

TABLE I. Effective radius R� (in Å), for the ubiquitin (Ubq), UIM1, and the Ubq/UIM1
complex for rc ¼ 12, 16, 20 Å for attractive (�c ¼ 0:15, 0.30, 0.45, 0:60kBT) and repulsive
(�r ¼ 1:69kBT) interactions.

Ubq UIM1 Ubq/UIM1

�c 12 16 20 12 16 20 12 16 20

0.15 14.13 14.39 14.57 9.82 10.14 10.37 15.88 16.17 16.38

0.30 14.29 14.54 14.72 9.99 10.31 10.54 16.03 16.32 16.53

0.45 14.36 14.61 14.79 10.07 10.38 10.62 16.11 16.39 16.60

0.60 14.41 14.65 14.83 10.12 10.43 10.66 16.15 16.44 16.64

Repulsive interactions 15.18 15.42 15.59 10.83 11.13 11.35 16.92 17.20 17.40
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from the microscopic nature of the protein-crowder inter-
actions. At high attraction strengths, the enthalpic penalty
for breaking the crowder-protein interactions (at the expense
of protein-protein interactions) dominates, thus increasing
the binding free energy. At some critical attraction �critc , the
two contributions are canceled out, and the binding energy
in a crowded solution becomes equal to that in the absence
of crowders [see the green triangles and curve in Fig. 3(b)].

It was observed [30] that the critical attraction
�critc for which the effect of the excluded volume is canceled
out exactly by that of the attractive contribution
(i.e., ��Fbind ¼ 0), is approximately independent of the

crowder packing fraction �. This is owing to the fact that
��Fbind is almost linear in � for the �c considered. To
obtain an estimate of �critc , we combine Eqs. (4) and (7) and
solve for the �c that satisfies ��F

bind ¼ 0 up to the linear
order in �. One then obtains

�critc ¼ �Y=�W þOð�Þ; (9)

where

�Y ¼ 3ðyA þ yB � yABÞ þ 3ðy2A þ y2B � y2ABÞ
þ ðy3A þ y3B � y3ABÞ þ 1; (10)

�W ¼ 3ð ��ASA þ ��BSB � ��ABSABÞ�r=ð4�R3
c�cÞ: (11)

This yields �critc =kBT ’ 0:19, 0.27, 0.36 and 0.44 for

rc ¼ 8, 12, 16, 20 Å for the Ubq/UIM1 complex, and 0.28
and 0.35 for rc ¼ 16 and 20 Å for the Cc/CcP
complex, respectively, consistent with the simulation data
in Figs. 3 and 4. We can also plot �critc as it changes with
crowder size rc as shown in Fig. 5. For crowder-protein
attraction values above this line, one will observe destabili-
zation of protein association and stabilization below this line.
In summary, we have presented a quantitative theory for

protein association equilibria in a crowded solution for
both repulsive and attractive crowder-protein interactions.
This work is important for providing a theoretical founda-
tion for understanding the protein-protein interactions in a
cellular environment in which proteins and crowding mac-
romolecules exhibit nonspecific interactions in addition to
the excluded volume effects. The theory is based on the
statistical mechanics and thermodynamics of a hard-sphere
fluid. Even though proteins are highly anisometric, the
repulsive contribution to the binding free energy is
described well by the scaled particle theory of hard
spheres. The expression for the attractive contribution is

TABLE II. Normalized average attraction strength ���=�c and
the surface area S� (in �A3) for Ubq, UIM1, and the Ubq/UIM1
complex.

Ubq UIM1 Ubq/UIM1

rc ���=�c S� ���=�c S� ���=�c S�

8 4.56 6543 4.01 4100 4.61 7522

12 4.71 9278 4.07 6418 4.75 10487

16 4.79 12402 4.07 9143 4.85 13830

20 4.85 15921 4.04 12273 4.91 17562
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FIG. 3 (color online). Binding free energy ��Fbindð�Þ for the
Ubq/UIM1 complex as a function of the crowder packing fraction
�. The symbols and solid curves [�r ¼ 1:69kBT (black squares)
for repulsive interactions; �c ¼ 0:15kBT (red circles), 0:3kBT
(green up triangles), 0:45kBT (blue down triangles), and 0:6kBT
(purple diamonds) for attractive interactions] are simulation data
and predictions from the theory, respectively (see the text).

(a)

(b) (c)

FIG. 4 (color online). Binding free energy ��Fbind for the Cc/
CcP complex as a function of �. Symbols and curves are the
same as in Fig. 3.
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obtained by using thermodynamic perturbation theory and
the radial distribution function of hard-sphere fluids. The
theory is in excellent agreement with simulation results for
the Ubq/UIM1 and Cc/CcP complexes over a wide range of
crowder sizes, packing fractions, and attraction strengths.

We also observe crowding induced compensation for a
critical protein-crowder interaction strength (independent
of crowder packing fraction) leading to no change in the
binding free energy with respect to bulk. Earlier Trout and
co-workers had proposed a neutral-crowder hypothesis to
explain the kinetic effect of small solution additives
(crowders) that slow down the rate of protein association
and dissociation without perturbing the equilibrium [39].
It will be interesting, in the future, to explore the protein
kinetics near this critical protein-crowder interaction
strength to test if the neutral-crowder hypothesis is appli-
cable in general. In the future, we also plan to include
attractions in the crowder-crowder interaction potential to
study their interplay with protein-crowder and protein-
protein interactions [40].
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