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The composite fermion formalism elegantly describes some of the most fascinating behaviors of

interacting two-dimensional carriers at low temperatures and in strong perpendicular magnetic fields. In

this framework, carriers minimize their energy by attaching two flux quanta and forming new quasipar-

ticles, the so-called composite fermions. Thanks to the flux attachment, when a Landau level is half-filled,

the composite fermions feel a vanishing effective magnetic field and possess a Fermi surface with a well-

defined Fermi contour. Our measurements in a high-quality two-dimensional hole system confined to a

GaAs quantum well demonstrate that a parallel magnetic field can significantly distort the hole-flux

composite fermion Fermi contour.
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High-quality two-dimensional (2D) carrier systems offer
rich opportunities for exploring new physical phenomena.
At very low temperatures and in the presence of a strong
perpendicular magnetic field (B?), the electron-electron
interaction in these systems leads to a variety of remark-
able many-body phases, examples of which include the
fractional quantum Hall effect (FQHE) state, the Wigner
crystal, and the nonuniform density phases such as stripe
and bubble phases [1–3]. The FQHE can be successfully
described through the concept of composite fermions
(CFs), quasiparticles formed by the attachment of two (or
in general an even number of) flux quanta to each carrier in
high B? [3–9]. At the applied magnetic field B?;1=2 where

the lowest Landau level is exactly half-filled (� ¼ 1=2), the
flux attachment completely cancels this external field,
leaving the CFs as if they are at zero effective magnetic
field. The effective field the CFs feel away from � ¼ 1=2 is
given by B�

? ¼ B? � B?;1=2 [10]. At and near � ¼ 1=2,
analogously to the low-field carriers, the CFs occupy a
Fermi sea with a well-defined Fermi contour.

The existence of a CF Fermi contour raises the question
whether any low-field Fermi contour anisotropy is trans-
mitted to the high-field CFs after fermionization [11,12].
This issue was partially addressed in a recent experimental
study of 2D electrons confined to an AlAs quantum well
where they have an anisotropic (elliptical) Fermi contour
[12]. The study revealed that, qualitatively similar to their
B? ¼ 0 electron counterparts, CFs also exhibit a transport
anisotropy. Namely, the resistance at � ¼ 1=2 is larger
along the long axis of the B? ¼ 0 electron Fermi contour
(where the effective mass is large) compared to the resist-
ance along the short axis (where the effective mass is
smaller). While this observation suggests that the CFs
might also possess an anisotropic Fermi contour, it does
not provide conclusive or quantitative evidence for such
anisotropy. An anisotropy in the CF scattering time, for
example, would also lead to anisotropic transport. More
generally, the problem of anisotropy in FQHE phenomena

has sparked recent interest both experimentally and theo-
retically [13–17]. Here, we report direct measurements
evincing that the CF Fermi contour can be anisotropic.
Moreover, we demonstrate that the anisotropy is tunable
via the application of a strong magnetic field parallel to the
2D plane.
Figure 1 highlights the main ingredients of our Letter.

Imagine an isotropic 2D system in which the charged
particles have a circular Fermi contour (in reciprocal
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FIG. 1 (color online). (a), (b) The cyclotron orbit and the
Fermi contour are shown, respectively, for an isotropic 2D
system when Bk ¼ 0. (c),(d) If the 2D system has a finite

(nonzero) thickness, applying Bk > 0 distorts the cyclotron orbit

and the Fermi contour. (e) The sample has two Hall bars along
the perpendicular directions [110] and [�110], and Bk is intro-

duced along the [110] direction by tilting the sample with respect
to the magnetic field direction. The electron-beam resist grating
covering the top surface of each Hall bar is shown as gray (blue)
stripes. The orientations of the Hall bars and the resist gratings
are chosen to probe the Fermi contours in the [110] and [�110]
directions. The cyclotron orbits, given with brown lines, are
shown for the case when the orbit diameter fits the grating period
a in the [�110] direction but is larger than a in the [110] direction.
Inset: scanning electron microscope image of the electron-beam
resist grating with an a ¼ 200 nm period.
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space) with Fermi wave vector kF [Fig. 1(b)]. In a small,
purely perpendicular, magnetic field the particles’ classical
cyclotron orbit is also circular and is completely charac-
terized by the cyclotron radius RC [Fig. 1(a)]. Now, if the
particles have a finite (nonzero) layer thickness, a parallel
magnetic field (Bk) applied in the 2D plane couples to their

out-of-plane orbital motion and leads to a deformation of
the cyclotron orbit, shrinking its diameter in the in-plane
direction perpendicular to Bk [Fig. 1(c)]. Equivalently, the
particles’ Fermi contour becomes elongated in the direc-
tion perpendicular to Bk [Fig. 1(d)].

The Fermi contour and/or the cyclotron orbit deforma-
tion can be directly probed in a sample with a small,
periodic, one-dimensional, density modulation where the
carriers complete ballistic cyclotron orbits: whenever the
orbit diameter becomes commensurate with the period of
the density modulation, the sample’s magnetoresistance
exhibits a resistance minimum. In particular, the anisot-
ropy of the cyclotron orbit or the Fermi contour can be
determined via measuring the positions of the commensu-
rability magnetoresistance minima along the two perpen-
dicular arms of an L-shaped Hall bar as shown in Fig. 1(e).
In a recent study, using the technique described in Fig. 1,
we indeed measured the Fermi contour anisotropy of 2D
hole systems confined to a GaAs quantum well and found
that the contour is severely distorted when the 2D holes are
subjected to a strong Bk of the order of 10 T [18]. In the

work described here, we use similar samples and tech-
niques to demonstrate that the Fermi contour of the hole-
flux CFs is also distorted when a strong Bk is applied,

although the degree of anisotropy is much smaller.
We studied strain-induced superlattice samples with

lattice periods of a ¼ 175 and 200 nm from a 2D hole
system confined to a 175 Å wide GaAs quantum well
grown via molecular beam epitaxy on a (001) GaAs sub-
strate. The quantum well, located 131 nm under the sur-
face, is flanked on each side by 95 nm thickAl0:24Ga0:76 As
spacer layers and C �-doped layers. The 2D hole density at
T ’ 0:3 K is p ’ 1:5� 1011 cm�2, and the mobility is
� ¼ 1:2� 106 cm2=Vs. As schematically illustrated in
Fig. 1(e), the sample has two Hall bars, oriented along
the [110] and [�110] directions. The Hall bars are covered
with periodic gratings of negative electron-beam resist.
Through the piezoelectric effect in GaAs, the resist pattern
induces a periodic density modulation [18–24]. We passed
current along the two Hall bar arms and measured the
longitudinal resistances along the arms in tilted magnetic
fields, with � denoting the angle between the field direction
and the normal to the 2D plane; see Fig. 1(e). The sample
was tilted around the [�110] direction so that Bk was always
along [110]. We performed the experiments using low-
frequency lock-in techniques in two 3He refrigerators
with base temperatures of T ’ 0:3 K, one with an 18 T
superconducting magnet and the other with a 31 T resistive
magnet.

The high-field data (Fig. 2), taken at � ¼ 0� (Bk ¼ 0), for
the two Hall bars of the a ¼ 200 nm sample exhibit promi-
nent commensurability features around � ¼ 1=2: a charac-
teristic, V-shaped, resistance dip centered at � ¼ 1=2 and
two strong resistance minima, marked by arrows on each
side of � ¼ 1=2, followed by flanks of rapidly rising resist-
ance [24–31]. Of particular interest to us are the two minima
as they correspond to the commensurability of the CF cy-
clotron orbit diameter (2R�

C) with the period a of the poten-

tial modulation. Quantitatively, for a circular CF Fermi
contour, the positions of these resistance minima are given
by the magnetic commensurability condition [24–32],

2R�
C

a
¼ 5

4
; (1)

where R�
C ¼ @k�F=eB�

? is the CF cyclotron radius at B�
?,

k�F ¼ ffiffiffiffiffiffiffiffiffiffi

4�p
p

is the CF Fermi wave vector, and p is the 2D
hole density [10]; note that the expression for k�F takes into
account complete spin polarization at high fields and is

larger that its low-field hole counterpart by a factor of
ffiffiffi

2
p

.
In a recent study, it was demonstrated that Eq. (1) indeed
describes the positions of resistance minima exhibited by
hole-fluxCFs in our samples in the absence ofBk [24]; this is
seen in Fig. 2 where the arrows point to the positions of the
minima expected from Eq. (1). In the present study, we
monitor the shift in the observed positions of these minima
as a function of applied Bk to directly probe the size and

shape of the CF Fermi contour.
As illustrated in Fig. 3, the application of Bk has a

profound effect on the appearance of the commensurability
minima near � ¼ 1=2. Data for the two Hall bars along the
[110] and [�110] directions are shown side-by-side in
Figs. 3(a) and 3(b). In both panels, the vertical green
dashed lines mark the expected positions of the CF
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FIG. 2 (color online). Magnetoresistance traces from the [110]
and [�110] Hall bars of a sample with a ¼ 200 nm are shown in
black and gray (red), respectively. The two prominent resistance
minima visible near � ¼ 1=2, marked by arrows, signal the
commensurability of the CF cyclotron orbit diameter with the
period of the density modulation (see text).
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commensurability resistance minima based on Eq. (1).
These dashed lines match very well the observed positions
of the resistance minima for the bottom traces of Fig. 3
which were taken at � ¼ 0 (Bk ¼ 0) [33]. With increasing

� and Bk, for the [110] Hall bar [Fig. 3(a)], the positions of
the two resistance minima shift away from the dashed lines
to higher values of jB�

?j. As evidenced by the top trace

in Fig. 3(a), their shift reaches ’ 0:25 T at the highest
� (¼ 64�). In contrast, the positions of the resistance
minima for the Hall bar in the perpendicular, [�110] direc-
tion [Fig. 3(b)] move toward lower jB�

?j, and the shift is

smaller. In particular, when � ¼ 62�, the minima of the top
trace have moved toward B�

? ¼ 0 only by ’ 0:10 T.
The positions of the resistance minima along the [�110]

and [110] directions can be used to directly extract the
magnitude of the CF Fermi wave vectors along [110] and
[�110] and [110], respectively. According to Eq. (1), k�F ¼
ð5=8ÞðeaB�

?=@Þ, where B�
? indicates the effective CF mag-

netic field at which the resistance minimum is observed.
Note that the commensurability condition along a given
modulation direction gives the size of k�F in the direction
perpendicular to the modulation direction [18,19,34].

Using the above relation, we converted the B�
? positions

of the resistivity minima seen in Fig. 3 to the size of the CF
k�F along the [�110] and [110] directions and summarize the
results in Figs. 4(a) and 4(b). The horizontal, green dashed
lines in these figures indicate the expected k�F, if a circular
CF Fermi contour is assumed. For data taken at Bk ¼ 0, the
values of k�F are mostly in good agreement with those
expected for CFs with a circular Fermi contour [33].
With increasing Bk, however, it is clear in Figs. 4(a)

and 4(b) that the CF Fermi wave vector along [�110]
increases (by as much as 30% at the highest Bk), while
along [110] it decreases (by nearly 15%). These data
therefore provide unambiguous and quantitative evidence
for a deformation of the CF Fermi contour in the presence
of an applied Bk. Moreover, by tilting the sample, the CF

anisotropy can be controllably tuned.
We combine the data of Figs. 4(a) and 4(b) to deduce the

relative distortion of the CF Fermi contour, as shown in
Fig. 4(c). Here, we plot the ratio of k�F along the [�110] and
[110] directions, as deduced from the B�

? > 0 data. Before
performing the division, we fitted each set of data points
from Figs. 4(a) and 4(b) with simple, second-order poly-
nomials. The ratio of the two k�F values in the two direc-
tions is as high as 50% at Bk ¼ 25 T, indicating a severe

distortion as a result of Bk. One obvious question that

arises is whether the CF Fermi contour is elliptical or has
a more complicated (warped) shape, e.g., similar to those
we recently measured for 2D holes near zero magnetic field
[18]. Since, in our experiments, we measure CF k�F only
along two specific (and perpendicular) directions, we can-
not rule out a complicated shape. However, our data are
consistent with a nearly elliptical CF Fermi contour. This is
evinced from the plot of Fig. 4(d) where we plot the ratio of
the geometric mean of the two k�F’s we measure along
[�110] and [110] to the Fermi wave vector expected for a
circular CF Fermi contour, i.e., to k�F ¼ ffiffiffiffiffiffiffiffiffiffi

4�p
p

. The fact
that this ratio is close to unity implies that the area enclosed
by an elliptical Fermi contour whose major and minor
Fermi wave vectors are equal to the two values we measure
has the correct magnitude; i.e., it accounts for all the CFs.
We show such an ellipse in Fig. 4(c) inset (solid black
curve).
The CF commensurability data described here provide

the first direct evidence that the CF Fermi contour can be
anisotropic. Moreover, they demonstrate how this anisot-
ropy can be tuned via the application of a strong Bk. The
origin of this anisotropy is very likely the coupling
between Bk and the out-of-plane motion of the CFs, which

have nonzero thickness. Such coupling is known to se-
verely distort the Fermi contour of low-field carriers
(Fig. 1). Indeed, for the low-field 2D holes in our samples,
we recently measured a very elongated (and nonelliptical)
Fermi contour with an anisotropy ratio of about 3 (at Bk ¼
15 T), and found the data to be in reasonable agreement
with the results of band calculations [18]. The anisotropy
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FIG. 3 (color online). (a) Summary of the evolution of the
magnetoresistance in the vicinity of � ¼ 1=2 of the a ¼ 175 nm
sample measured along the [110] Hall bar. The tilt angle � is
given for each trace. The vertical green dashed lines mark the
expected positions of the primary CF commensurability resist-
ance minima if the CF cyclotron orbit were circular.
(b) Magnetoresistance data for the a ¼ 200 nm sample mea-
sured along the [�110] Hall bar. In both (a) and (b), the scale for
the applied external field B? is shown on top while the scale for
the effective magnetic field B�

? ¼ B? � B?;1=2 felt by the CFs is

given at the bottom (B?;1=2 is the external field at � ¼ 1=2).
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ratio we measure for the CF Fermi contour at a comparable
Bk is much smaller, only about 1.2 [Fig. 4(c)]. Absent,

however, are theoretical calculations that would treat the
anisotropy of CF Fermi contours in the presence of Bk in
general, and in particular explain the anisotropy we mea-
sure in our experiments. The much different anisotropy
that we observe for the hole-flux CF Fermi contour com-
pared to the 2D holes indeed appears to contradict the
conclusions of the only available theoretical work which
predicts that the CF Fermi contour shape should be iden-
tical to that of the zero-field particles [11]. We note that,
besides its thickness, other parameters of the quasi-2D
carrier system, such as the band structure and effective
mass as well as the character of the Landau level where the
CFs are formed, are also likely to play an important role in
determining the anisotropy of the CF Fermi contour in a
strong Bk. Our conjecture is based on our preliminary data

for a 300 Åwide GaAs quantum well containing electrons:
despite its larger thickness, this sample exhibits a CF Fermi
contour anisotropy which is much smaller than the anisot-
ropy we observe in our 175 Å wide GaAs hole quantum
well sample.

While a quantitative explanation of our experimental
data awaits future theoretical work, we emphasize that
our results clearly establish the presence of CF Fermi
contour anisotropy. This has important implications and
raises several interesting questions. For example, what is
the role of anisotropic interaction in general? How does the

anisotropy affect the ground states and the excitations of
the 2D carrier system at high perpendicular fields? Does
the anisotropy affect, e.g., the energy gaps of the fractional
quantum Hall states? Our results provide stimulus for
future studies to answer some of these questions.
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