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Motivated by the recent indications of ferromagnetism in transition metal oxide heterostructures, we

propose a possible mechanism to generate ferromagnetism for itinerant t2g systems in two spatial

dimensions that does not rely on the coupling between local moments and conduction electrons. We

particularly emphasize the orbital nature of different bands and show that when the Fermi level lies near

the bottom of the upper bands, a nonperturbative interaction effect due to the quasi-one-dimensional

nature of the upper bands may drive a transition to a state in which the upper bands are ferromagnetically

polarized. In the quasi-one-dimensional limit, the full thermodynamics may be obtained exactly. We

discuss the connection between our mechanism with several itinerant t2g systems that may have

ferromagnetic instabilities.
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Possible ferromagnetism at polar interfaces between
SrTiO3 (STO) and other oxides such as LaAlO3 (LAO)
or GdTiO3 (GTO) [1–6] has raised considerable excite-
ment. Such ferromagnetism is remarkable as the electrons
are believed to reside nearly completely in the t2g bands of

the STO, where there are no localized partially filled shells
to form local moments. Ferromagnetism in purely itinerant
systems, while envisioned long ago [7], is quite rare in
practice; most examples may be at least partially attributed
to local moments formed by partially filled d-shells (and
often other delocalized electrons).

In this Letter, we discuss the possibility of ferromagne-
tism in t2g systems of this type. In a typical metallic state,

ferromagnetism is unfavorable because of the kinetic en-
ergy cost. This is believed to be overcome at very low
density, where the dimensionless interelectron distance
rs * 30 [8,9]), and also very close to the Mott metal-
insulator transition, when the electron filling is close to
an integer. In the former regime, ferromagnetism and
indeed metallicity as well are extremely fragile to disorder
and may be disregarded in almost all practical situations.
The latter situation might be thought to apply to the afore-
mentioned LAO/STO and GTO/STO interfaces, in which
there is an intrinsic mechanism for high carrier density: the
polar discontinuity [10]. LAO and GTO have a structure of
polar (001) layers: La3þO2� has a net charge of þ1 per
unit cell, while Al3þðO2�Þ2 has a net charge of�1 per unit
cell (the same counting holds for GTO). STO by contrast is
nonpolar. At an ideal (i.e., without atomic reconstruction or
compensating defects) interface between two such materi-
als, an electron gas is predicted to arise with a carrier
density of half an electron per two-dimensional unit cell.
This translates, using the unit cell of STO, into a two-
dimensional carrier density of n ¼ 3:5� 1014 cm�2,
which is extremely large by semiconductor standards.
However, this still corresponds to a fractional Ti site

occupation x < 0:5, and probably more properly x < 0:2,
taking into account the spread of the electrons normal to
the interface [11–14] Modern computational studies have
put strong restrictions on ferromagnetism due to Mott
physics in Hubbard models [15], the most recent studies
arguing it is absent in the two-dimensional Hubbard model
for fractional site occupation x & 0:7, even when the on-
site Hubbard interaction U ! 1 [16,17]. STO two-
dimensional electron gases (2DEGs) are well below this
degree of site occupation, so Mott physics cannot be
invoked to explain ferromagnetism.
Instead, we propose here that an unusual enhanced

tendency to ferromagnetism may occur due to the quasi-
one-dimensionality of certain bands in these materials,
which in turn arises due to the directionality of the t2g
orbitals involved. The enhanced tendency to magnetism is
a nonperturbative effect of the Hubbard U interaction,
which leads to strong scattering in one-dimensional sub-
bands with low filling. The nonperturbative effects can be
controlled by virtue of exact results and bosonization
methods which are particular to one-dimensional prob-
lems. Due to the nonperturbative effect, ferromagnetism
is induced by even very weak atomic Hund’s exchange on
the Ti atom (see below). We argue that the ferromagnetism
survives in sufficiently anisotropic two-dimensional sys-
tems. It occurs only for low filling of the xz=yz subbands,
where the majority of the polarization resides. The central
result of our calculations is summarized by the phase
diagram in Fig. 1.
For our discussion, we will require a few particulars of

the conduction band states in STO, which are well estab-
lished. The low-lying octahedral t2g crystal field levels of

Ti comprise yz, xz, and xy orbitals. Owing to its direction-
ality, hopping t in the plane of a given orbital is much larger
than the hopping t0 normal to the plane (values in the
literature are in the range 0:03< t0=t < 0:15 [11]). Thus

PRL 110, 206401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
17 MAY 2013

0031-9007=13=110(20)=206401(4) 206401-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.206401


in a bulk system with cubic symmetry, there are three
bands each of which disperses predominantly in two of
the three Cartesian directions. When confinement is intro-
duced in the z direction for a (001) interface, an xy subband
is lowest energy and disperses fairly uniformly in the two-
dimensional plane, while xz and yz subbands are higher in
energy and approximately one dimensional.

The reduction of the kinetic energy of the xz and yz
subbands suggests we consider them for possible ferro-
magnetic polarization. We therefore adopt a minimal
model with three, two-dimensional subbands for the
(001) interface, with the Hamiltonian H ¼ H 0 þH I,
where the kinetic energy is

H 0 ¼
X
k;�

k2x þ k2y
2m0

dy0�ðkÞd0�ðkÞ

þ X
k;�;i¼x;y

�
�þ k2i

2mi

�
dyi�ðkÞdi�ðkÞ: (1)

Here d0�, dx�, dy� describe the xy, xz, and yz bands (with

spin polarization � ¼ " , #), respectively, mi is an effective
mass, and � is the subband crystal field splitting. We have
assumed a tetragonal crystal field symmetry for the (001)
interface in Eq. (1), somx ¼ my. Since we always consider

the band bottom, this is equivalent to taking a tight-binding
model with hopping amplitude ti ¼ 1=ð2mia

2Þ, where a is
the lattice spacing. Here we make an approximation t0 �
tx ¼ ty � t so that all the effective masses are equal. We

take on-site interactions, of the form

H I ¼ U
X
r;i

ni"ðrÞni#ðrÞ þU0 X
r;i�j

niðrÞnjðrÞ

� JH
X
r;i�j

SiðrÞ � SjðrÞ; (2)

where ni�ðrÞ ¼ dyi�ðrÞdi�ðrÞ, niðrÞ ¼ P
�ni�ðrÞ, and

SiðrÞ ¼ 1=2
P

��d
y
i�ðrÞ���di�ðrÞ. As usual, we expect

the intraorbital interaction Hubbard U to be the largest
interaction, with the interorbital interaction U0 and the
Hund’s coupling JH rather smaller, U0=U, JH=U & 0:3.
Other interactions are typically at least an order of magni-
tude smaller in three-dimensional transition metal com-
pounds, and interactions between different Ti sites are
strongly screened. To proceed, we first project H I onto
the two-dimensional subbands, which replaces the cou-
plings by renormalized reduced ones, U ! U=z, U0 !
U0=z, JH ! JH=z, where z is roughly the number of STO
unit cells over which the subbands are spread (strictly
speaking these factors depend on the bands involved, but
below interactions play a key role only for the xz=yz
subbands — for which z � 4 obtains based on subband
modeling). We henceforth absorb this renormalization into
the couplings.
To analyze the effect of interactions, we now treat theU0

and JH as small (which they are, relative toU) and consider
possible ferromagnetic instabilities they induce. With
U0 ¼ JH ¼ 0, the Hamiltonian is decoupled to three
single-band problems, and hence does not support ferro-
magnetism. However, crucially, the xz and yz subsystems
become extremely susceptible to ferromagnetism when
they contain a low density of electrons. What we require
is the free energy of each orbital subsystem as a function of
its magnetization, including the effects of strong on-siteU.
For the xy subband, which is two-dimensional, an on-site
interaction U has little effect, and in the low density (per
lattice site) limit studied here, the interactions can be
exactly treated by a standard T-matrix ladder summation.
The result is simply a Fermi liquid with small Landau
parameters, which can be neglected at the level of the
present consideration. A posteriori, it is justified to assume
the magnetizationM0 of the xy subband is small, so that we
can just approximate its free energy by the quadratic form
M2

0=ð2�2dÞ, where �2d is the susceptibility for such a two-

dimensional system. Neglecting the Fermi liquid correc-
tion, this is �2d ¼ ma2=ð2�Þ ¼ 1=ð4�tÞ.
For the xz and yz subbands, however, due to their one-

dimensionality, the situation is radically different.
Remarkably, it is known that the susceptibility, �1d, of a
one-dimensional electron gas (1DEG) is highly divergent
at low density [18,19]. In particular, it actually diverges as
�1d � 1=ðWx21Þ, where W is an energy scale and x1 is the
occupation per site, for any nonzero U. This is a strong
interaction effect: the ratio of the interacting to free fer-
mion susceptibility �1d=�ff ! 1 diverges for x1 ! 0.

We can explain the enhanced susceptibility, and even
obtain a general result for the free energy versus magneti-
zation, starting from the fact that low energy scattering is
enhanced in one dimension. In particular, for an arbitrary
repulsive interaction, the reflection probability for a pair of
scattering particles approaches unity when their energy
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FIG. 1 (color online). Phase boundary in the one-dimensional
limit, t0 ¼ 0. Here x1 is the occupation per site of the xz or yz
orbitals, JH is the renormalized Hund’s coupling (see text), W is
an energy scale of order the hopping, and it is assumed that x1,
JH=W � 1. Solid and dashed lines denote continuous and first-
order transitions, respectively.
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approaches its minimum; this is true only in one dimen-
sion. Consequently, the electrons in a low density 1DEG
are almost unable to exchange, and the energy of the
ground state becomes almost independent of spin, and
equal to that of spinless fermions. In fact, there is a para-
metrically weak residual exchange coupling, which occurs
due to the small transmission probability of colliding elec-
trons. Because the charge degrees of freedom are well
ordered on this exchange scale, the spin dependence of
the ground state energy is exactly that of a one-dimensional
Heisenberg antiferromagnetic chain with an effective ex-
change interaction Jeff much smaller than the one-
dimensional Fermi energy �F, and one ‘‘site’’ per electron
in the 1DEG. We expect Jeff=�F to vanish as x1 ! 0, and
since �F � tx21, we guess Jeff �Wx31. We have checked that

this agrees with all known exact results for the suscepti-
bility of the one-dimensional Hubbard model [18,19]. In
the large U limit, we obtain W � 2�2t2=ð3UÞ, while for
small U, W �U. Using the former estimate, we obtain
W � ð1–2Þt for the titanates.

Consequently, we can obtain the free energy for an
arbitrary magnetization of the one-dimensional xz and yz
subbands. If the spin (per site) in the xy band isM0 and that
in the xz and yz bands is M1, it is (per site)

F ¼ M2
0

2�2d

þ 2x1JeffF1

�
M1

x1
;
kBT

Jeff

�
� JHð2M0M1 þM2

1Þ;
(3)

where F1½m; t	 is the free energy per site of the one-
dimensional antiferromagnet chain unit exchange with
magnetization m and temperature t. This assumes x1�1.
The first two terms represent the exact thermodynamics for
the decoupled orbital subsystems and fully incorporate
all the effects of U. The last term is simply the leading
first-order term in the expansion of the energy of these states
in JH, presumed small. Equation (3) may also be interpreted
in terms of a mean-field treatment of the Hund’s coupling
only. This is quite analogous to ‘‘chain mean-field theory,’’
which has been successfully applied to explain numerous
experiments in low-dimensional magnetic materials [20]
and is known to be usually quantitatively rather accurate.

Using Jeff ¼ Wx31 and M1 
 x1=2, we see from Eq. (3)

that when x1 &
ffiffiffiffiffiffiffiffiffiffiffiffiffi
JH=W

p
, the Hund’s energy overwhelms

the one-dimensional exchange and favors a ferromagnetic
state with M1 � 0. Remarkably, this occurs for arbitrarily
weak Hund’s coupling JH, provided the filling of the upper
xz and yz subbands is sufficiently small and, of course,
nonzero. This gives a mechanism for ferromagnetism at
intermediate carrier density, when the total density is near
the critical value needed to just populate the xz and yz
subbands, with magnetism disappearing both for smaller
and larger carrier density. A quantitative minimization of
Eq. (3) is possible since F1½m; t	 is known exactly from the
thermodynamic Bethe ansatz [21]. Assuming JH � t,
W and x1 � 1, we obtain a dome-shaped region of

ferromagnetism, as shown in Fig. 1. Note that the charac-
teristic maximum temperature scale is of order of

kBTc � 0:05
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J3H=W

q
. From this minimization, we can

also obtain the magnetization at all temperatures and fields.
In particular we find that at T ¼ 0, the xz=yz bands are
fully polarized.
It may appear that the one dimensional physics of the

above picture is overly exotic and restrictive. However, this
is not the case, and can persist up to some reasonable value
of t0. This hopping causes a crossover from one-
dimensional behavior to two-dimensional Fermi liquid
behavior at low energy. By continuity, for small t0=t, this
Fermi liquid must have an enhanced spin susceptibility
captured by a large Fermi liquid correction Fa

0 . However,

the eventual two-dimensionality induced by nonzero t0
controls the maximum susceptibility achieved at small
x1, and if this effect is too large, the ferromagnetic insta-
bility may be entirely removed. The susceptibility diver-
gence is cut off when the distance between the Fermi
energy and the bottom of the xz and yz bands is comparable
to the hopping t0, i.e., tx21 � t0. The same condition
describes the change from an open Fermi surface to an
elliptical one. This gives the condition t0 & JHt=W for the
ferromagnetic phase to occur (we neglect numerical pre-
factors here due to the imprecision of the matching argu-
ment). Of course, when t0 is substantial, the magnitude of
the magnetization and of Tc will be reduced from the one-
dimensional values given in Fig. 1, further increasing the
tendency to low Tc and small net moment.
Recently the (110) and (111) LAO-STO interfaces have

also been prepared experimentally [22,23], and both inter-
faces appear to support STO electron gases, though the
(111) interface is polar and the (110) is not. As listed in
Table I, these two interfaces have different local crystal
field environments and hence different local orbital
configuration from the (001) interface. Can these two
interfaces also support ferromagnetism—under ideal
disorder-free conditions—at certain electron fillings?
As usual, the eg doublets are always higher in energy

and do not play any role. For the (110) interface, the three
t2g orbitals are split into three nondegenerate orbitals:

TABLE I. The relevant local crystal symmetries and local
orbital states for different interfaces. ‘‘;’’ delimits the sets of
locally degenerate orbital states. Note that there could be a small
hybridization between ð1= ffiffiffi

2
p Þðxzþ yzÞ and xy orbitals for the

(110) interface.

Interfaces Symmetry Local orbitals

(001) Fourfold rotation xz, yz; xy

(110) Twofold rotation ð1= ffiffiffi
2

p Þðxzþ yzÞ; xy; ð1= ffiffiffi
2

p Þðxz� yzÞ
ð1= ffiffiffi

3
p Þðxyþ eið2�=3Þyzþ e�ið2�=3ÞxzÞ,

(111) Threefold rotation ð1= ffiffiffi
3

p Þðxyþ e�ið2�=3Þyzþ eið2�=3ÞxzÞ;
ð1= ffiffiffi

3
p Þðxyþ yzþ xzÞ
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ð1= ffiffiffi
2

p Þðxzþ yzÞ, ð1= ffiffiffi
2

p Þðxz� yzÞ, and xy. In the first

approximation, the local hybridization between ð1= ffiffiffi
2

p Þ�
ðxzþ yzÞ and xy orbitals may be neglected. When these
two orbitals form bands, they are also quasi-one-
dimensional, just like xz and yz orbitals for the (001)
interface. Hopping among 1ffiffi

2
p ðxzþ yzÞ (=xy) orbitals

occurs most strongly with neighbors along z (=½1�10	)
lattice directions. The ð1= ffiffiffi

2
p Þðxz� yzÞ subband is two

dimensional and its band bottom is the lowest among the
three subbands. Due to the reduced symmetry of the (110)
interface, the two upper quasi-one-dimensional subbands
are split. Based on our above discussion of ferromagnetic
instability for the (001) interface, we also expect emergent
ferromagnetism for the (110) interface when the filling of
the quasi-one-dimensional subband is sufficiently small.
Because the two upper quasi-one-dimensional subbands
are not degenerate, there may even exist two ferromagnetic
regimes as the electron filling of the two upper subbands is
increased. One should note that the discussion here

assumes no hybridization between ð1= ffiffiffi
2

p Þðxzþ yzÞ and
xy orbitals. In reality, there is always small hybridization
between these two orbitals. If this hybridization is very

small (smaller than Oð ffiffiffiffiffiffiffiffiffiffiffi
JH=J

p Þ), the resulting two-
dimensional Fermi liquid should still have a large spin
susceptibility and ferromagnetism can still be present.

For the (111) interface, although locally the crystal field

splits three t2g orbitals into one a1g state, ð1= ffiffiffi
3

p Þðxyþ
yzþ xzÞ, and two e02g states, ð1= ffiffiffi

3
p Þðxyþ eið2�=3Þyzþ

e�ið2�=3ÞxzÞ and ð1= ffiffiffi
3

p Þðxyþ e�ið2�=3Þyzþ eið2�=3ÞxzÞ,
the electron hopping strongly hybridizes three orbitals
and leads to two-dimensional Fermi liquids. Hence, no
ferromagnetism arises in this case.

In contrast to the itinerant mechanism discussed here,
other theoretical works have instead proposed mechanisms
relying on localized electron moments. While we believe
thatMott localization of electrons near the interface should
not occur for ideal structures, sufficient disorder and
interactions together might create some truly localized
moments. If the localized electron mechanisms are correct,
we predict significant dependence of the ferromagnetism
on disorder, and indeed that it should weaken as sample
quality is improved. The itinerant mechanism discussed
here has its own distinct predictions, e.g., Fig. 1, and the
fact that the polarization resides in xz=yz bands, which
may be tested by x-ray dichroism experiments. Further,
varying the electron concentration away from the critical
density by tuning the back gate voltage may easily sup-
press the ferromagnetism, and ferromagnetism should be
absent at the (111) interface; neither prediction applies for
the local moment mechanism [24].
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