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Recent fully nonlinear, kinetic three-dimensional simulations of magnetic reconnection [W. Daughton

et al., Nat. Phys. 7, 539 (2011)] evolve structures and exhibit dynamics on multiple scales, in a manner

reminiscent of turbulence. These simulations of reconnection are among thefirst to be performed at sufficient

spatiotemporal resolution to allow formal quantitative analysis of statistical scaling, which we present here.

Wefind that themagnetic field fluctuations generated by reconnection are anisotropic, have nontrivial spatial

correlation, and exhibit the hallmarks of finite range fluid turbulence: they have non-Gaussian distributions,

exhibit extended self-similarity in their scaling, and are spatially multifractal. Furthermore, we find that the

rate at which the fields do work on the particles, J � E, is also multifractal, so that magnetic energy is

converted to plasma kinetic energy in amanner that is spatially intermittent. This suggests that dissipation in

this sense in collisionless reconnection on kinetic scales has an analogue in fluidlike turbulent phenome-

nology, in that it proceeds via multifractal structures generated by an intermittent cascade.

DOI: 10.1103/PhysRevLett.110.205002 PACS numbers: 94.30.cp, 94.05.Lk

Magnetic reconnection is a fundamental process that
converts magnetic energy into various forms of plasma
kinetic energy. It is thought to occur in a variety of space,
astrophysical, and laboratory applications, with parameter
regimes spanning from collisional to highly collisionless
plasmas (e.g., see Ref. [1] and references therein). While
many studies have focused on laminar initial conditions, it
is now widely recognized that the influence of turbulence
remains a major uncertainty. Depending on the application,
the turbulence may arise from a spectrum of instabilities
within the reconnection layer or from preexisting magnetic
fluctuations in the ambient plasma. While the effects of
preexisting turbulence [2–6] and self-generation of turbu-
lence [7–10] have been considered in magnetohydro-
dynamics (MHD), there has been relatively little work on
these issues in the kinetic regime.

Moving beyond the MHD model into kinetic regimes,
most research has focused on initially laminar current
sheets within a variety of descriptions [11] including two
fluid, hybrid, and fully kinetic simulations, which allow a
complete description of the electron physics responsible for
breaking the frozen-flux condition in collisionless parame-
ter regimes [12,13]. As larger kinetic simulations became
possible, one surprising result was that the nonlinear evo-
lution of reconnection produced extended electron-scale
current sheets, with half thickness on the order of the
electron inertial length and lengths that can extend beyond
the ion inertial scale [14–18]. These predictions have since
been confirmed in spacecraft observations [19]. While the
precise details depend on the strength of the guide field (i.e.,
magnetic shear angle), it has been demonstrated that elec-
tron pressure anisotropy plays a key role in setting up and

driving these layers [20]. Thus the existence of these struc-
tures is nowwell accepted and a variety of two-dimensional
(2D) kinetic simulations has shown the layers can become
unstable to secondarymagnetic islands [14–17] leading to a
time dependent scenario. Recent extensions of these kinetic
simulations to three dimensions have demonstrated that the
tearing instability within these electron layers has much
greater freedom to develop and gives rise to numerous
magnetic flux ropes [21]. The subsequent nonlinear inter-
action of these flux ropes is seen in the simulations to lead to
the self-generation of structures on multiple scales within
the initially laminar ion-scale current layer. The question
then arises—is the multiscale nature of these flux ropes
important for dissipation in the sense of conversion of
magnetic to kinetic energy? The key properties of turbu-
lence in this context are that it cascades energy in a scale
invariant and intermittent manner. Thus turbulence pro-
vides a mechanism to form a spatial multifractal field of
coherent structures across a broad range of spatial scales
which can then contribute to dissipation of magnetic field
energy into plasma kinetic energy.
In this Letter we show that these fully kinetic 3D

particle-in-cell (PIC) simulations of magnetic reconnec-
tion [21] do indeed exhibit the hallmarks of intermittent
turbulence. A key property of turbulence is that it can be
characterized and quantified in a robust and reproducible
way in terms of ensemble averaged statistical properties of
fluctuations. In an infinite medium, fully developed turbu-
lence exhibits statistical scale invariance in fluctuations in
the bulk quantities that describe the flow. Either when the
turbulence is not completely evolved (low Reynolds num-
ber), or the system is of finite size, a generalized scale
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invariance or extended self-similarity (ESS) [22] still holds
in both hydrodynamic and MHD turbulent flows as seen,
for example, in the solar wind (e.g., see Refs. [23–25]) and
in a solar quiescent prominence [26]. A key discriminator
of turbulence is that fluctuations have non-Gaussian proba-
bility density functions (PDFs) with moments that exhibit
multifractal scaling. Remarkably, we find that the magnetic
field fluctuations on kinetic scales in these 3D simulations
of reconnection have this quantitative statistical character;
specifically, they show non-Gaussian statistics and ESS
consistent with multifractal scaling. Furthermore, dissipa-
tion, in the sense of conversion of magnetic to kinetic
energy, occurs on a multifractal field. This suggests that
dissipation in collisionless reconnection on kinetic scales
has an analogue in fluidlike turbulent phenomenology, in
that it proceeds via multifractal structures generated by an
intermittent cascade.

We focus on 3D simulations of undriven magnetic
reconnection in collisionless plasmas [21]. These petascale
simulations use a kinetic PIC description which self-
consistently advances the full relativistic particle equations
of motion and Maxwell’s equations. The simulation is
initialized with a Harris current sheet, with magnetic field
B ¼ Bxo tanhðz=�Þex þ Byoey , where ex and ey are unit

vectors, Byo ¼ Bxo is a uniform guide field, and � ¼ di is

the initial half thickness, where di is an ion inertial length.
Here the ion electron mass ratio is mi=me ¼ 100, which
implies that di is 10de (the electron inertial length). The
simulation employs open boundary conditions in the x
and z directions and periodic boundary conditions in the
y direction. The dimensions of the simulation grid are Lx�
Ly�Lz¼2048�2048�1024 cells, corresponding to

70di � 70di � 35di. We consider a slice of the 3D simu-
lation grid in the X-Z plane at Y ¼ 35di and at the time
t�ci ¼ 78 of the simulation, where �ci � eBx0=ðmicÞ.
This time slice corresponds to a middle phase of the
magnetic reconnection in which the turbulence quantita-
tively reaches its peak of evolution as seen in the power
level over the region of scaling in the power spectral
density (here not shown). The overall time evolution of
the simulation is shown in Ref. [21]. We also analyzed an
early and late phase of the process at t�ci ¼ 40 and 98,
respectively, and find that the reconnection generated fluc-
tuations evolve in time: at early time the power in these
fluctuations is weak though above the noise, then it grows
in amplitude up to the middle phase where the total inte-
grated field energy density over the turbulent region of the
power spectral density is�0:1 that of the background field.

The reconnection rate in these kinetic simulations is fast,
Vin=VA � 0:1, as is the case for kinetic simulations of
reconnection where the flow is almost laminar (e.g., see
Ref. [27] and references therein); hence, these kinetic
simulations do not show a correlation between the level
of turbulence fluctuations and the reconnection rate. Such a
correlation in MHD was analytically predicted in Ref. [3]

and found in some numerical simulations (e.g., see
Ref. [28]). Here, we do not address the correlation, or
lack thereof, between the level of turbulence and the
reconnection rate. We provide the first evidence that these
fluctuations are indeed quantitatively identifiable as a tur-
bulent cascade, with a corresponding signature in the spa-
tial distribution of the rate at which energy is transferred to
the plasma.
Figure 1 shows the z component of the magnetic field Bz

at t�ci ¼ 78 corresponding to the time-space slice forwhich
we present the analysis here. We take cuts on the simulation
grid along the horizontal direction and label them as cut 1 to
6 (see Fig. 1). Cuts 2–5 are within the reconnection region
where the field is strongly fluctuating, while cut 1 and 6 lie
where there is a negligible signature of reconnection. The
latter are taken to quantify the effects of the PIC simulation
noise. Herewe focus upon the analysis of the z component of
the magnetic field. The reconnection generated fluctuations
are highly anisotropic in character and have the clearest
signature in their z component which is perpendicular to
the x-y plane of the macroscopic field of these simulations.
This anisotropy parallels what has been recently observed
both in kinetic range turbulence in the solar wind (e.g., see
Refs. [29,30]) and in a reconnection jet [31].
Fluctuations associated with fully developed intermit-

tent turbulent flows are characterized by non-Gaussian
probability distribution functions. Under the assumption
of statistical stationarity and homogeneity, fluctuations of
a field I on length scale L along a given direction r are
defined as �IðLÞ ¼ Iðrþ LÞ � IðrÞ. Figure 2 shows the
PDFs of the fluctuations �BzðLÞ at different scales L for cut
4 (left panel) and cut 1 (right panel). We can see that the
fluctuations of cut 4 (reconnection generated fluctuations)
follow a non-Gaussian distribution at scales L in the range
4de < L< 25de, while fluctuations associated with cut 1
(noise) are Gaussian distributed up to scales L� 100de ¼
10di. The latter suggest that the PIC noise behaves as
Brownian noise. We recover consistent statistics also for

FIG. 1 (color online). Bz in the X-Z plane at Y ¼ 35di and at
the time t�ci ¼ 78 of the simulation. Solid black lines are the
cuts chosen for the analysis of the magnetic fluctuations, while
squares indicate the regions over which we perform the box-
counting analysis of J �E.
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the other cuts considered, that is, Gaussian distributions for
cut 6 at scales L up to �10di and non-Gaussian PDFs
for cuts 2, 3, and 5 within the range 4de < L < 25de. We
identify the latter as a potential range of turbulence, which
we now test.

A central characteristic of turbulence is that the PDFs of
non-Gaussian fluctuations at different scales are related by
a multifractal similarity or scaling. We now test for this
by examining the generalized structure functions (GSFs) of
the magnetic field fluctuations �BzðLÞ, defined as SpðLÞ �
hj�BzðLÞjpi, where the angular brackets indicate an ense-
mble average over r, implying approximate statistical
homogeneity. In infinite range fully developed turbulence,

one would expect the GSFs to scale as SpðLÞ � L�ðpÞ,
where the �ðpÞ are the scaling exponents. For turbulence
in a finite domain, or for turbulence that is not fully devel-
oped, a generalized scale invariance or ESS can hold, with

SpðLÞ �GðLÞ�ðpÞ, where the function GðLÞ is an initially

unknown function that depends on the largest scale physical
structures [25,32,33].

While for fractal fields �ðpÞ is linear in p, intermittent
turbulence is realized by multifractal topology (e.g., see
Ref. [34]) and the �ðpÞ are nonlinear in p. In finite range
turbulence, one does not have direct access to the scaling
exponents �ðpÞ; however, it is possible to obtain their ratios
�ðpÞ=�ðqÞ by plotting one structure function of order p
against another structure function of order q. Thus, ESS
establishes the following scaling for the structure functions

SpðLÞ ¼ ½SqðLÞ��ðpÞ=�ðqÞ [22].
In Fig. 3 we plot S2 versus S3 on a logarithmic scale for

all the cuts considered. We see that ESS holds for both cuts
1 and 6, which are simulation noise, and over the range of
scales 4de < L< 25de in cuts 2 to 5, where the fluctua-
tions are potentially turbulent. This implies that both noise
and reconnection generated fluctuations have a range of
scale invariance. Now, the question that immediately arises
is whether these fluctuations are multifractal or not.

We calculate all possible combinations of the scaling
exponents ratio �ðpÞ=�ðqÞ for p, q ¼ 1, 2, 3, and 4 by
plotting logðSpÞ versus logðSqÞ and by reading the gra-

dients of the linear fits to these curves within the poten-
tially turbulent range 4de < L < 25de for cuts 2 to 5 and in
the noise range 1di < L < 10di for cuts 1 and 6. The panels
in Fig. 4 show the ratios �ðpÞ=�ðqÞ versus p for q ¼ 1 up to
4 for cuts 1 and 6 (noise) and cuts 2 to 5 (reconnection
fluctuations). The noise cuts (blue rectangles) show a linear
behavior of �ðpÞ with p, consistent with a fractal field. The
PIC noise thus generates a spatial field of magnetic fluc-
tuations which is a self-affine Brownian noise, showing
fractal scaling. Importantly, it is clearly distinguishable
from the reconnection generated fluctuations of cuts 2 to
5 (green dots), which instead consistently show a nonlinear
dependence of �ðpÞ on pwithin uncertainty. The reconnec-
tion generated structures are thus robustly characterized by
amultifractal spatial field. Atminimum, this suggests a new
signature of reconnection outflow regions that could pro-
vide amethod for observational identification, as has indeed
been recently observed [31]. However, this is also a key
signature of a multifractal intermittent turbulence phe-
nomenology. It suggests that dissipation, in the sense of
conversion of magnetic to kinetic energy, in collisionless
reconnection on kinetic scales has an analogue in dissipa-
tion in fluidlike turbulent phenomenology, in that it pro-
ceeds via a spatial multifractal field of structures generated
by an intermittent cascade. If this is the case, then the spatial
dissipation field will also be multifractal.
We now test this idea by directly quantifying the spatial

topology of the field J � E. We show results for the three

FIG. 3 (color online). Log-log plots of S2 against S3 for all the
cuts of interest. Dashed black lines correspond to the linear
regression fits in the potentially turbulence range 4de < L <
25de for cuts 2 to 5 and within the range 1di < L< 10di for cuts
1 and 6. All curves are shifted along the y direction for clarity.

FIG. 2 (color online). PDFs of the fluctuations �BzðLÞ ¼
BzðX þ LÞ � BzðXÞ of cut 4 (left panel) and cut 1 (right panel)
for six different values of the space lag L. In both panels, all
PDFs are centered on the mean value h�BzðLÞi and normalized to
the standard deviation � to allow comparisons with a Gaussian
distribution (dashed black lines). All curves are shifted along the
y direction for clarity.
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components of J � E, at the same time-space slice of the
simulation discussed above. We perform the classical
box-counting method to calculate both the global and local
fractal dimension [35] for a reconnection dominated tur-
bulent region and a region where noise is dominant. The
box-counting method consists of dividing a spatial region
into boxes of size L using a regular grid, and then counting
the number of boxes NðLÞ that contain nonzero values of a
discretized spatial field.We consider the magnitude of each
component of J �E and we set the discretized value to zero
where it falls below a threshold; we test the robustness of
our results by varying this threshold. For sufficiently small
thresholds, this yields the topology of the noise field, but
for thresholds above the noise, we obtain the topology of
the turbulence. Box counting the thresholded turbulent
field then gives its spatial topology in the absence of noise,
without the need of a filtering or averaging. This method
can thus probe spatial structures on length scales where
the noise power dominates the overall signal power pro-
vided that, at least in some locations, the signal is above the
noise threshold. For fractal geometries NðLÞ is expected to
depend linearly upon L, while nonlinear trends of NðLÞ
against L indicate a multifractal field. In Fig. 5 we plot
NðLÞ versus L within the reconnection dominated turbu-
lent region and the noise region indicated, respectively, by
the red and yellow squares in Fig. 1. The noise region
shows a linear behavior of NðLÞ with L indicating that
the PIC noise is fractal; on the contrary, in the turbulent

region the plot introduces curvature for scales L smaller
than �25de. The inset of Fig. 5 also shows how the local
dimension nðLÞ¼dlnðNðLÞÞ=dlnðLÞ, varies with the scale
L. Within the noise region, the fractal dimension is roughly
constant as L varies, while it changes with the scale L in
the turbulent region again, a signature of multifractality.
Thus dissipation, in the sense of energy transfer to the plas-
ma via J � E, occurs in a spatially intermittent manner.
In conclusion, recent fully kinetic (PIC) simulations in

three dimensions reveal that reconnection is dominated
by magnetic structures on multiple scales which manifest
highly variable dynamics suggestive of turbulence. We
have quantified the ensemble averaged statistical proper-
ties of the spatial fields of fluctuations in the magnetic field
and in energy transfer to the plasma. The magnetic field
fluctuations are anisotropic and exhibit the hallmarks of
finite range fluid turbulence: they have non-Gaussian dis-
tributions, exhibit extended self-similarity in their scaling,
and are spatially multifractal. These signatures are recov-
ered quite robustly across the regions in the simulation
domain where reconnection is actively generating fluctua-
tions. This potentially offers a new observational test for
reconnection regions using in situ observations, so that, for
example, recent observations of non-Gaussian fluctuations

FIG. 5 (color online). Box-counting method. Plot of the num-
ber of boxes NðLÞ versus the box size L within a reconnection
dominated turbulent region (red square in Fig. 1) and a noise
region (yellow square in Fig. 1) for each component of J �E.
The inset figure shows the corresponding local dimension
nðLÞ ¼ d lnðNðLÞÞ=d lnðLÞ against the box size L.

FIG. 4 (color online). �ðpÞ=�ðqÞ versus p for cuts 1 and 6
(blue rectangles) and cuts 2 to 5 (green dots) and for q ¼ 1
(top left), 2 (top right), 3 (bottom left), and 4 (bottom right).
Solid and dashed red lines are the best fits to the curves within
uncertainty for the turbulent (cuts 2–5) and noise (cuts 1,6) cuts,
respectively.
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in a turbulent jet [31] (see also Refs. [36,37]) could be
tested for ESS and nonlinear ratios of exponents as found
here. Furthermore, the fact that we also find that the spatial
field of J �E is multifractal suggests that the turbulence
converts some of the magnetic energy to plasma kinetic
energy in a spatially intermittent manner. This suggests
that dissipation in the sense of energy transfer to the
plasma in collisionless reconnection on kinetic scales has
an analogue in fluidlike turbulent phenomenology, in that it
proceeds via multifractal structures generated by an inter-
mittent cascade. This provides a starting point for theoreti-
cal models of heating in collisionless reconnection; it also
suggests that existing analytical and quasianalytical mod-
els of heating in reconnection that do not take into account
the development of turbulence in the reconnection layer
may need revision.

E. L. and S. C.C. acknowledge the UK EPSRC and
STFC. W.D., H.K., and V.R. acknowledge partial support
from Grants No. DE-SC0004662 and NASA’s Heliophysics
Theory Program. Simulations were carried out on Kraken
with an allocation of advanced computing resources pro-
vided by the National Science Foundation at the National
Institute for Computational Sciences.

*e.leonardis@warwick.ac.uk
†Present address: SciberQuest, Inc., Del Mar, California
92014, USA.

[1] H. Ji and W. Daughton, Phys. Plasmas 18, 111207 (2011).
[2] W. Matthaeus and S. Lamkin, Phys. Fluids 29, 2513

(1986).
[3] A. Lazarian and E. T. Vishniac, Astrophys. J. Lett. 517,

700 (1999).
[4] N. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S. C.

Cowley, and T. A. Yousef, Mon. Not. R. Astron. Soc. 399,
L146 (2009).

[5] S. Servidio, P. Dmitruk, A. Greco, M. Wan, S. Donato,
P. A. Cassak, M.A. Shay, V. Carbone, and W.H.
Matthaeus, Nonlinear Proc. Geophys. 18, 675 (2011).

[6] G. Kowal, A. Lazarian, E. T. Vishniac, and K.
Otmianowska-Mazur, Nonlinear Proc. Geophys. 19, 297
(2012).

[7] N. F. Loureiro, A. A. Schekochihin, and S. C. Cowley,
Phys. Plasmas 14, 100703 (2007).

[8] G. Lapenta, Phys. Rev. Lett. 100, 235001 (2008).
[9] A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers,

Phys. Plasmas 16, 112102 (2009).
[10] Y.-M. Huang and A. Bhattacharjee, Phys. Plasmas 17,

062104 (2010).
[11] J. Birn et al., J. Geophys. Res. 106, 3715 (2001).

[12] M. Hesse, K. Schindler, J. Birn, and M. Kuznetsova, Phys.
Plasmas 6, 1781 (1999).

[13] P. Pritchett, J. Geophys. Res. 106, 3783 (2001).
[14] W. Daughton, J. Scudder, and H. Karimabadi, Phys.

Plasmas 13, 072101 (2006).
[15] J. Drake, M. Swisdak, K.M. Schoeffler, B. N. Rogers, and

S. Kobayashi, Geophys. Res. Lett. 33, L13105 (2006).
[16] H. Karimabadi, W. Daughton, and J. Scudder, Geophys.

Res. Lett. 34, L13104 (2007).
[17] A. Klimas, M. Hesse, and S. Zenitani, Phys. Plasmas 15,

082102 (2008).
[18] M.A. Shay, J. F. Drake, and M. Swisdak, Phys. Rev. Lett.

99, 155002 (2007).
[19] T.D. Phan, J. F. Drake, M.A. Shay, F. S. Mozer, and J. P.

Eastwood, Phys. Rev. Lett. 99, 255002 (2007).
[20] A. Le, J. Egedal, and O. Ohia, Phys. Rev. Lett. 110,

135004 (2013).
[21] W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin,

B. J. Albright, B. Bergen, and K. J. Bowers, Nat. Phys. 7,
539 (2011).

[22] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F.
Massaioli, and S. Succi, Phys. Rev. E 48, R29 (1993).

[23] R. Bruno and V. Carbone, Living Rev. Solar Phys. 2, 4
(2005).

[24] S. C. Chapman, R.M. Nicol, E. Leonardis, K. Kiyani, and
V. Carbone, Astrophys. J. Lett. 695, L185 (2009).

[25] S. C. Chapman and R.M. Nicol, Phys. Rev. Lett. 103,
241101 (2009).

[26] E. Leonardis, S. C. Chapman, and C. Foullon, Astrophys.
J. 745, 185 (2012).

[27] W. Daughton and V. Roytershteyn, Space Sci. Rev. 172,
271 (2012).

[28] G. Kowal, A. Lazarian, E. T. Vishniac, and K.
Otmianowska-Mazur, Astrophys. J. Lett. 700, 63 (2009).

[29] K. H. Kiyani, S. C. Chapman, F. Sahraoui, B. Hnat, O.
Fauvarque, and Yu.V. Khotyaintsev, Astrophys. J. 763, 10
(2013).

[30] A. J. Turner, G. Gogoberidze, and S. C. Chapman, Phys.
Rev. Lett. 108, 085001 (2012); arXiv:1110.2932.

[31] S. Y. Huang et al., Geophys. Res. Lett. 39, L11104 (2012).
[32] S. Grossmann, D. Lohse, V. L’vov, and I. Procaccia, Phys.

Rev. Lett. 73, 432 (1994).
[33] A. Bershadskii, J. Stat. Phys. 128, 721 (2007).
[34] U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov

(Cambridge University Press, Cambridge, England, 1995).
[35] B. Mandelbrot, Fractals: Form, Chance, and Dimension

(Freeman, San Francisco, 1977).
[36] C. C. Chaston, J. R. Johnson, M. Wilber, M. Acuna, M. L.

Goldstein, and H. Reme, Phys. Rev. Lett. 102, 015001
(2009).

[37] L. Dai, J. R. Wygant, C. Cattell, J. Dombeck, S. Thaller,
C. Mouikis, A. Balogh, and H. Rème, J. Geophys. Res.
(Space Phys.) 116, A12227 (2011).

PRL 110, 205002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
17 MAY 2013

205002-5

http://dx.doi.org/10.1063/1.3647505
http://dx.doi.org/10.1063/1.866004
http://dx.doi.org/10.1063/1.866004
http://dx.doi.org/10.1086/307233
http://dx.doi.org/10.1086/307233
http://dx.doi.org/10.1111/j.1745-3933.2009.00742.x
http://dx.doi.org/10.1111/j.1745-3933.2009.00742.x
http://dx.doi.org/10.5194/npg-18-675-2011
http://dx.doi.org/10.5194/npg-19-297-2012
http://dx.doi.org/10.5194/npg-19-297-2012
http://dx.doi.org/10.1063/1.2783986
http://dx.doi.org/10.1103/PhysRevLett.100.235001
http://dx.doi.org/10.1063/1.3264103
http://dx.doi.org/10.1063/1.3420208
http://dx.doi.org/10.1063/1.3420208
http://dx.doi.org/10.1029/1999JA900449
http://dx.doi.org/10.1063/1.873436
http://dx.doi.org/10.1063/1.873436
http://dx.doi.org/10.1029/1999JA001006
http://dx.doi.org/10.1063/1.2218817
http://dx.doi.org/10.1063/1.2218817
http://dx.doi.org/10.1029/2006GL025957
http://dx.doi.org/10.1029/2007GL030306
http://dx.doi.org/10.1029/2007GL030306
http://dx.doi.org/10.1063/1.2965826
http://dx.doi.org/10.1063/1.2965826
http://dx.doi.org/10.1103/PhysRevLett.99.155002
http://dx.doi.org/10.1103/PhysRevLett.99.155002
http://dx.doi.org/10.1103/PhysRevLett.99.255002
http://dx.doi.org/10.1103/PhysRevLett.110.135004
http://dx.doi.org/10.1103/PhysRevLett.110.135004
http://dx.doi.org/10.1038/nphys1965
http://dx.doi.org/10.1038/nphys1965
http://dx.doi.org/10.1103/PhysRevE.48.R29
http://dx.doi.org/10.12942/lrsp-2005-4
http://dx.doi.org/10.12942/lrsp-2005-4
http://dx.doi.org/10.1088/0004-637X/695/2/L185
http://dx.doi.org/10.1103/PhysRevLett.103.241101
http://dx.doi.org/10.1103/PhysRevLett.103.241101
http://dx.doi.org/10.1088/0004-637X/745/2/185
http://dx.doi.org/10.1088/0004-637X/745/2/185
http://dx.doi.org/10.1007/s11214-011-9766-z
http://dx.doi.org/10.1007/s11214-011-9766-z
http://dx.doi.org/10.1088/0004-637X/700/1/63
http://dx.doi.org/10.1088/0004-637X/763/1/10
http://dx.doi.org/10.1088/0004-637X/763/1/10
http://dx.doi.org/10.1103/PhysRevLett.108.085001
http://dx.doi.org/10.1103/PhysRevLett.108.085001
http://arXiv.org/abs/1110.2932
http://dx.doi.org/10.1029/2012GL052210
http://dx.doi.org/10.1103/PhysRevLett.73.432
http://dx.doi.org/10.1103/PhysRevLett.73.432
http://dx.doi.org/10.1007/s10955-007-9322-0
http://dx.doi.org/10.1103/PhysRevLett.102.015001
http://dx.doi.org/10.1103/PhysRevLett.102.015001
http://dx.doi.org/10.1029/2011JA017004
http://dx.doi.org/10.1029/2011JA017004

