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Laminar-turbulent intermittency is intrinsic to the transitional regime of a wide range of fluid flows

including pipe, channel, boundary layer, and Couette flow. In the latter turbulent spots can grow and form

continuous stripes, yet in the stripe-normal direction they remain interspersed by laminar fluid. We carry

out direct numerical simulations in a long narrow domain and observe that individual turbulent stripes are

transient. In agreement with recent observations in pipe flow, we find that turbulence becomes sustained at

a distinct critical point once the spatial proliferation outweighs the inherent decaying process. By

resolving the asymptotic size distributions close to criticality we can for the first time demonstrate scale

invariance at the onset of turbulence.
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Turbulence often arises despite the linear stability of the
laminar flow and the nature of this transition has remained
unresolved for over a century [1]. Prominent examples are
pipe, channel, and Couette flows and here finite amplitude
perturbations can lead to sufficiently strong distortions of
the base flow, that for large enough Reynolds numbers
(Re ¼ UL=�, characteristic length L, velocity U, and
kinematic viscosity �) causes transition to turbulence. At
moderate Re turbulent structures are localized and are
commonly referred to as spots or stripes in channel and
Couette flow and puffs in pipe flow. Individual localized
structures are of transient nature [2,3] but they can also
temporarily grow and seed new spots in their vicinity,
overall resulting in complex spatiotemporal dynamics. As
shown for pipe flow, this spreading rate increases with Re,
eventually outweighing the decay [4]. It has been argued
that this mechanism causes a phase transition in the ther-
modynamic limit from transient to sustained turbulence
[5]. As Re surpasses the critical point, turbulence can
survive overall due to the spatial spreading. The observed
dynamics bears resemblance to a contact process such as
directed percolation (DP) [6]. In this analogy laminar flow
corresponds to the absorbing passive state and turbulence
to the active one. However, for pipe flow [4] the phase
transition has not been characterized directly but has only
been inferred from the statistical behavior (mean splitting
and decay times) of individual spots. The main difficulty in
pipe flow is that the relevant time scales of the relevant
processes are extremely large, putting a study of correla-
tion exponents presently beyond reach. Here we report a
numerical (direct numerical simulation, DNS) study of
another fundamental shear flow, plane Couette flow
(PCF), where the fluid is sheared between two sliding
plates [see Fig. 1(a)]. As will be shown below, the time
scales close to the critical point are much smaller than

those in pipe flow. Hence size distributions and turbulent
fractions can be determined close to criticality, which
provides a unique opportunity to characterize the phase
transition.
Because of its unlimited width in the spanwise direction

(z0 in Fig. 1), PCF is spatially more complex than pipe flow.
In order to simplify the spatial-temporal complexity and to
enable us to resolve the long interaction times, we choose
a slender computational domain inclined with the
streamwise direction, as shown in Fig. 1(b). The idea
of such a ‘‘tilted’’ computational domain was originally
introduced to reduce the computing cost by Barkley and
Tuckerman [7].

FIG. 1 (color online). Schematic of the computational domain
for PCF. (a) normal box and (b) tilted slender rectangle [white
rectangle in (a)]. The stripe pattern in the background is a
visualization of the streamwise vorticity field.
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Simulations are carried out using a numerical code for
Taylor-Couette flow (flow between two rotating concentric
cylinders) [8]. The two cylinders are chosen to counter-
rotate and a radius ratio (inner to outer cylinder radius) of
� ¼ 0:993 has been selected so that curvature effects are
negligible. As shown in an earlier study [9] Taylor-Couette
flow approaches the PCF limit for these parameter settings
and is linearly stable for all Reynolds numbers (Re) rele-
vant to this study. By using the half gap distance h and
�h ¼ h=U (here U is the magnitude of the boundary ve-
locity) as the length and time unit, the dimensionless
incompressible Navier-Stokes equations are numerically
solved with a Petrov-Galerkin pseudospectral method [8].
We discretize the equations using Fourier modes in the in-
plane directions and by modified Chebyshev polynomials
in the wall-normal direction. The Reynolds number is here
defined as Re ¼ Uh=� and the velocity field is decom-
posed into base flow and perturbation, u ¼ Ub þ u0,
where the perturbation part u0 can be expressed as

u0ðr; �; zÞ ¼ XL

l¼�L

XN

n¼�N

XM

m¼0

alnme
iðlkzzþnk��ÞvlnmðrÞ; (1)

where alnm are the spectral coefficients and vlnm are the
Chebyshev polynomials. Periodic boundary conditions are
imposed in the in-plane directions, while no-slip boundary
conditions are applied in the wall-normal direction. The
size of the computational domain is chosen sufficiently big
in the z direction ðLz � L� � LrÞ ¼ ð100h� 10h� 2hÞ to
study the evolution of isolated stripes whereas for the study
of stripe interactions Lz is increased to 960h. The spatial
resolution (number of grid points) for the smaller domain is
½2L� 2N � ðMþ 1Þ� ¼ ð512� 48� 27Þ, the adequacy
of which is checked by the one-dimensional energy spectra
and by the convergence study of the statistical lifetime and
splitting time distributions. For the larger domain the reso-
lution in z direction is increased to 6144.

For the investigation of the decay and splitting of indi-
vidual localized turbulent stripes, uncorrelated velocity
fields of single stripes were used as initial conditions.
These were generated by first simulating a fully turbulent
flow at Re ¼ 400, followed by a sudden reduction to the
desired Reynolds number Re ¼ 325. Since the decay and
splitting are observed to depend strongly on the initial
conditions, many realizations are necessary to determine
the mean lifetimes and splitting times. The Reynolds num-
bers of interest are in the range of Re 2 ½310; 350�. At each
Re, 300 realizations with different initial conditions are
conducted and each simulation was run for a predefined
time duration (cutoff time). If a decay or splitting occurred
earlier, the run was terminated after this event. Let Ns, Nd,
and Nc denote the number of splitting, decaying cases, and
the ones reaching the cutoff time, respectively. By sorting
in increasing order all the final times associated with
splitting events (or splitting time), we obtain a splitting

time series ftsi gNs

i¼1, with the probability that a stripe has not
split up to a time t

Pðsplitting at t � tsi Þ ¼ Ps
i ¼ 1� ði� 1Þ=Ns;

i ¼ 1; . . . ; Ns: (2)

As shown in Fig. 2(a), the probability distributions of the
splitting have exponential tails (excluding the initial
formation period t0). This shows that stripe splitting is a
memoryless process and we can therefore determine the
mean time �sðReÞ for a splitting to occur by the following
exponential ansatz:

PsðtÞ ¼ exp½�ðt� t0Þ=�sðReÞ�; (3)

with �s estimated by the sample mean

�s ¼ 1

Ns

XNs

i¼1

tsi � t0: (4)

The sample mean is effectively the maximum likelihood
estimator of the scale parameter �s [10]. t0 has been
determined in the same way as described in Ref. [3].
From Fig. 2(a), we find that the mean splitting time (slope

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−2

10
−1

10
0

ts/τ
h

P
(t

s )

Re=325

Re=330

Re=335

Re=340

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−2

10
−1

10
0

t d/τ
h

P
(t

d )

Re=310

Re=315

Re=320

Re=325

Re=330

(a)

(b)

FIG. 2 (color online). Probability distributions of a single
turbulent stripe at different Reynolds numbers. (a) Splitting
times and (b) lifetimes, normalized by �h ¼ h=U. The dashed
lines are the corresponding exponential curves from Eq. (3).
Y axis is in the logarithmic scale.
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of the distributions) decreases quickly with Re. The exact
dependence of �s on Re is shown in Fig. 3 (dark square
points). It turns out that the best fit for the simulation data is
a superexponential function represented by the dark dashed
line. Hence �sðReÞ only approaches infinity asymptotically
as Re decreases and consequently a nonzero splitting
probability remains even for smaller Re.

The same method is applied to obtain the probability
distributions of the decay events (or lifetimes), the result of
which is plotted in Fig. 2(b). The lifetimes of localized
turbulent stripes are also exponentially distributed, with
the mean lifetime �d scaling superexponentially with Re
(red circles in Fig. 3). Overall splitting and decay statistics
show the same qualitative behavior as pipe flow
(see Ref. [4]), suggesting that the key physical processes
are largely independent of the geometry and possibly apply
to canonical shear flows.

The intersection of the two curves �s;dðReÞ in Fig. 3 fixes
a distinct Reynolds number Re ’ 325 where the mean time

scales of both processes are in balance, namely, �sðReÞ ¼
�dðReÞ. This value gives a lower bound for the critical Rec
below which turbulence decays after a sufficiently long
time and it is also very close to earlier estimates of the
critical point [11,12], although those were carried out in
domains with a much larger spanwise length. While char-
acterization of the spreading and decay processes for flows
in streamwise and spanwise long domains would require
excessive computation time, the same line of argument
would be applicable here. Again turbulence should become
sustained once growth processes (streamwise and span-
wise) outweigh the decay.
In analogy to contact processes like DP the turbulent and

laminar domains can be viewed respectively as the active
and passive state. In order for turbulence to survive in the
system the splitting rate has to be larger than the decay rate,
otherwise turbulence dies out. The onset of sustained
turbulence may, in analogy to DP-like systems, become
sustained at a nonequilibrium phase transition [13]. As a
clear signature the spacing between active sites should
become scale invariant close to the critical point and hence
the passive regions have no characteristic length.
To test this, another set of simulations are performed and

we extend the box size in the stripe-normal direction êz to
960h such that spatial correlations are taken into account.
Through the simulations at three different Reynolds num-
bers (subcritical, critical, and supercritical), the observed
dynamics agree qualitatively with the DP model (see
Fig. 4): At Re ¼ 300, the flow returns to the laminar state
after a sufficiently long time; at Re ¼ 360, an initial single
stripe quickly splits until it reaches a statistically stationary
state with a typical stripe spacing. At Re ¼ 329:5, on the
other hand, turbulence persists but the stripe spacings
change throughout, exploring all scales permitted in the
given domain size. An example of stripe splitting is shown
in Fig. 4(d). After an initial increase in width, the stripe
breaks up into two segments of similar size that then
continue to separate. It should be noted that this process
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FIG. 3 (color online). Scaling of the parameter �s;d with Re of
the splitting (dark square) and decaying (red circle) of individual
turbulent stripes. The error bars correspond to the 95% confi-
dence intervals. The dashed lines are the superexponential curves
to guide the eyes.

FIG. 4 (color online). Spatiotemporal diagrams at different regimes: (a) subcritical at Re ¼ 300; (b) slightly above the critical point
at Re ¼ 329:5; and (c) supercritical at Re ¼ 360. (d) A close-up view of the splitting event at the moment indicated by the circle in (b).
Snapshots are taken at the mid �-z plane. Color map shows the streamwise vorticity.
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differs from puff splitting in pipes where the new puff
originates from a thin filament of vorticity that disconnects
from the original puff (Fig. 2A in Ref. [4]). Furthermore, in
pipes, splitting exclusively occurs in the downstream di-
rection whereas in the present case no preferable splitting
direction exists.

For a quantitative evaluation of the laminar spacing,
sizes of laminar gaps are measured by setting a cutoff
value to the averaged vorticity, below which the flow is
considered to be laminar, and the distributions are tested to
be insensitive to the cutoff value (except for shifts of the
absolute values). Data are sampled at the (quasi-)stationary
state, over a time interval of Oð105Þ�h. It is observed that
the size distributions sufficiently above critical are expo-
nential and hence possess a characteristic size. Close to the
critical point the distributions follow a power law instead
(Re ¼ 329 in Fig. 5), implying that there is no character-
istic length. Size distributions hence indeed exhibit scale
invariance, confirming that the intersection point in Fig. 3
marks a phase transition and the onset of sustained turbu-
lence. Furthermore, the circumstance that size distributions
follow a power law close to criticality and become expo-
nential at larger supercritical values shows that the result-
ing intermittent flows are intrinsically irregular and do not
form fixed patterns as had been proposed previously [14].

In summary our investigation shows that the decay of
turbulent stripes in Couette flow is a memoryless process
and that individual stripes remain transient. Only through
spatial proliferation can turbulence eventually become
sustained. The splitting process that underlies this expan-
sion of turbulence is memoryless. Overall this behavior
closely resembles the onset of turbulence in pipe flow and
it is hence likely that these processes are generally respon-
sible for the onset of turbulence in canonical shear flows.
In contrast to pipe flow, here the relevant mean times of the

decay and spreading processes are several orders of mag-
nitude smaller, which allows measurements close to criti-
cality. The scale invariant distributions observed show that
the transition to turbulence is a nonequilibrium second
order phase transition. While many aspects of this transi-
tion are analogues to directed percolation, measurements
of the critical exponents of the transition to turbulence
would require extremely long integration times and set
challenges for future studies.
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FIG. 5 (color online). Size distributions of laminar gaps at
Re ¼ 329 and Re ¼ 340 in semilogarithmic scale. The length
in z direction is Lz ¼ 960h. Inset is the plot in log-log scale.
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