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We study scalar mixing in heterogeneous conductivity fields, whose structural disorder varies from

weak to strong. A range of stretching regimes is observed, depending on the level of structural

heterogeneity, measured by the log-conductivity field variance. We propose a unified framework to

quantify the overall concentration distribution predicting its shape and rate of deformation as it progresses

toward uniformity in the medium. The scalar mixture is represented by a set of stretched lamellae whose

rate of diffusive smoothing is locally enhanced by kinematic stretching. Overlap between the lamellae is

enforced by confinement of the scalar line support within the dispersion area. Based on these elementary

processes, we derive analytical expressions for the concentration distribution, resulting from the interplay

between stretching, diffusion, and random overlaps, holding for all field heterogeneities, residence times,

and Péclet numbers.
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Understanding the impact of the stirring field hetero-
geneity on the concentration distribution of a mixture
being transported by the flow is a central question of the
physics of mixing in fluids. Because of its obvious bearing
on a variety of associated phenomena, such as chemical
reactions, kinetics, chemotaxis, and biological activity
[1–3], this question has received various kinds of answers
(see, e.g., [4–6]).

We are concerned here with porous media, which, unlike
fluids, have a structure which does not deform in general.
However, their flow heterogeneity at different scales gener-
ates a similar folding and stretching [7,8] to those in stirred
fluids. Mixing in such flows controls important subsurface
processes, including the kinetics of biogeochemical reac-
tions, the migration of contaminants, the development of
biofilms, and the geological storage of carbon dioxide [9–14].

Velocity fields in soils or permeable rocks are among the
most heterogeneous flows in nature, since the medium con-
ductivity can easily vary over several orders of magnitude
over short distances [15]. While many studies have inves-
tigated the upscaling of dispersive spreading, which quan-
tifies the spatial extent of transported plumes, the upscaling
of mixing and variability of concentration levels in porous
media is still an open issue [8,12,16]. For some simple flow
fields [17] or idealized processes [18], the concentration
probability density function (PDF) has been derived analyti-
cally. However, the most common approach is to assume
an ad hoc distribution and parametrize it from the evolution
of low order concentration moments, usually invoking the
assumption of weak heterogeneity [19].

From the analysis of the processes altering the mixture in
a synthetic porous medium, we decipher the distinct roles
played by stretching enhanced diffusion and interaction
rules between nearby elements [20] to develop a unified
mixing theory for heterogeneous porous media, providing
an analytical prediction of the concentration PDF for arbi-
trary heterogeneity and Péclet numbers [21].
We consider mixing in two-dimensional heterogeneous

porous media, which are characterized by a spatially
variable hydraulic conductivity KðxÞ (Fig. 1). The joint
distribution of the point values of log-conductivity lnKðxÞ
is multivariate Gaussian and characterized by the correla-
tion length � and a variance �2

lnK. The correlation function

of lnK fluctuations is of Gaussian shape. This type of ran-
dom conductivity field is generic and represents a reference
field for theories of flow and transport in heterogeneous
porous media [10,15]. Spatial variability of the conductiv-
ityKðxÞ is mapped onto the divergence-free flow field uðxÞ
via the Darcy equation uðxÞ ¼ �KðxÞrhðxÞ, with hðxÞ
the hydraulic head [see an example of a velocity field in
Fig. 2(c)]. Transport of a passive scalar cðx; tÞ in the flow
field uðxÞ is described by the Fokker-Planck or advection-
diffusion equation

@cðx; tÞ
@t

þ uðxÞ � rcðx; tÞ �Dr2cðx; tÞ ¼ 0; (1)

where D denotes the (constant) diffusion coefficient.
As boundary conditions, we impose an instantaneous

line injection at x0 ¼ � with homogeneous concentration
c0 ¼ 2� 10�3, no flux at the horizontal boundaries, and a
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perfectly absorbing boundary at the outlet. The flow equa-
tion is solved numerically with a finite difference scheme
over the domain �¼fxjx12½0;819:2��;x22½0;102:4��g.
The spatial discretization scale is set as �=8. Transport
is solved by particle tracking using 107 particles, which
provides an accurate simulation of the concentration field
down to a minimum concentration of 10�6. The character-
istic advection time scale is defined by �a ¼ �= �u, where �u
is the mean transport velocity. The characteristic diffusion
time is �D ¼ �2=D. The Péclet number Pe ¼ � �u=D com-
pares the diffusive and advective time scales.

Figure 1 displays the simulated concentration field at
different times for moderate and strong heterogeneities and
a Péclet number Pe ¼ 8� 102. The scalar line, initially
located perpendicular to the main flow direction, distorts
into a brush with a typical streamwise width �ðtÞ, increas-
ing in time. The brush is made of a collection of strips,
aligned on average with the direction of the mean flow.
At early times, the scalar concentration is close to uniform

along the stretching direction and varies rapidly along the
compressive one [Fig. 1(c)], thus forming a lamellalike
topology [22]; the concentration field can be seen as a set
of lamellae, whose concentration depends on the interac-
tion between local stretching and diffusion. Compression
perpendicular to the stretching direction enhances diffusive
mass transfer by steepening the scalar gradient. At later
times, neighboring lamellae overlap by diffusive coales-
cence. The concentration field is then composed of lamella
aggregates and concentration lacunarities [Fig. 1(c)].
Although the following derivations are done for the 2D
case, the basic processes governing the temporal evolution
of the concentration field in 3D are similar, with 2D sheets
as elementary structures rather than lamellae [22,23].
The impact of stretching on the concentration distri-

bution can be quantified by considering the elementary
processes at the scale of a single lamella, of initial size
L0, width s0, and concentration c0. The temporal evolution
of the concentration cð�; tÞ at a position � along the direc-
tion perpendicular to the lamella is [6,24,25]

cð�; tÞ ¼
c0 exp

h
� �2=sðtÞ2

1þ4�ðtÞ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�ðtÞp ; (2)

where the expression of �ðtÞ depends on the temporal
evolution of the lamella elongation �ðtÞ ¼ LðtÞ=L0

� ¼
Z t

0
dt0

D�ðt0Þ2
s20

: (3)

The concentration distribution across the lamella is
Gaussian, with a maximum concentration � given by

�ð�Þ ¼ c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�

p : (4)

The PDF of concentration point values that correspond to
the distribution (2) with a concentration range of [�, �] is
given by

pcðcj�Þ ¼ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð�=�Þ lnð�=cÞp ; (5)

where � and � are, respectively, the minimum and maxi-
mum concentrations in the strip.
In the regimewhere the lamellae do not overlap, the total

concentration PDF can be obtained from the PDF of
maximum concentrations pmð�; tÞ as

pcðc; tÞ ¼
Z c0

c
d�

pmð�; tÞ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð�=�Þ lnð�=cÞp ; (6)

with c � �. This expression depends on the distribution
of �ðtÞ through (4) and thus on the history of lamella
elongations �ðtÞ through (3).
The distribution of elongations p�ð�; tÞ at each time is

quantified numerically by computing the pair separation
LðtÞ of advecting particles, originally regularly distributed

FIG. 1 (color online). Concentration field c at times
t1 ¼ 12:5�a (proportional to color intensity) and t2 ¼ 112:5�a
(proportional to color intensity), for an initial line injection
with uniform concentration c0 ¼ 2� 10�3 at longitudinal posi-
tion x0 ¼ � (dashed black line), a Péclet number Pe ¼ 8� 102,
and permeability field variances equal to (a) �2

lnK ¼ 1 and

(b) �2
lnK ¼ 4. The plume is transported from left to right with

a mean velocity �u and a dispersion length �ðtÞ increasing
with time. (c) zoom of the concentration fields at each time
with superimposition of a purely advected line (black lines),
initially located at x0 ¼ �, illustrating the composition of the
mixture by stretching and diffusive coalescence (see also the
corresponding velocity field in Fig. 2).
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on the injection line, with a separation distance L0 ¼
1:25� 10�4� [Fig. 2(c)]. The structural heterogeneity
leads to a broad distribution of elongations � ¼ L=L0

[Fig. 2(b)], with a significant probability of values less
than 1, which implies the existence of compression pro-
cesses. Note that, for large elongations, particle pairs may
split and take independent paths as a consequence of the
finiteness of the number of particles used to estimate
the pair separation. This issue can be addressed by refining
the line discretization, i.e., increasing the number of parti-
cles, as the length of the line increases [25]. Here, we
performed numerical tests to choose a sufficiently large
initial number of particles to ensure a good quantification
of the elongation statistics.

The average elongation is found to grow as

h�i ¼ ðt=�aÞ�; (7)

where the exponent � ranges from � ¼ 0:8 for the
moderate heterogeneity field to � ¼ 1:25 for the strong
heterogeneity field [Fig. 2(a)].

The nonlinear nature of stretching has important
implications for the geometry of the line. During its trans-
port, the advected line is confined in a domain whose
longitudinal extent grows as the characteristic spreading
length �ðtÞ and whose lateral extent is constant [Fig. 1(a)].
For the considered conductivity fields, advective spreading
scales as

� / t	=2; (8)

where 	 ranges from 	 ¼ 1 for the moderate hetero-
geneity to 	 ¼ 1:4 for the strong heterogeneity. The
superdiffusive behavior 	> 1 observed for strongly het-
erogenous media is expected to reflect a crossover between
the initial ballistic to the ultimate diffusive dispersion
regime [21], but it is generally persistent over a significant
range of times [26].
The power law behavior of the mean elongation h�ðtÞi

and the dispersion length �ðtÞ implies that the advected
line can be characterized by a fractal dimension Df,

such that

h�i / �Df; (9)

where Df is the fractal dimension of the line

Df ¼ 2�=	: (10)

Equation (10) provides a key relationship between
deformation, spreading, and the geometry of the scalar
field. The fractal dimension of the advected line support,
computed by box counting, is found to be well defined over
2 orders of magnitude in space. It is independent of time
and ranges from Df ¼ 1:6 for the moderate heterogeneity

to Df ¼ 1:8 for the strong heterogeneity, which is consis-

tent with Eq. (10). Based on this equation, we can estimate
the upper and lower bounds for the exponent � to be � ¼
1=2 for weak random heterogeneities (	 ¼ 1 and Df ¼ 1)

and � ¼ 2 for strongly structured stratified conductivity
fields (	 ¼ 2 andDf ¼ 2). Hence, the elongation temporal

scaling can follow a broad range of temporal behaviors,
from diffusive to quadratic.
A simple stochastic model of Lagrangian elongation,

which reflects the multiplicative nature of the stretching
process and satisfies the temporal power law behavior of the
mean elongation (7), is the following Langevin equation

1

�

d�

dt
¼ 


t
þ

ffiffiffiffiffiffi
2�

t

s
�ðtÞ; (11)

where �ðtÞ is taken as a Gaussian white noise, with
h�ðtÞi ¼ 0 and h�ðtÞ�ðt0Þi ¼ 
ðt� t0Þ, which results from
the observed short-range temporal correlation of computed
Lagrangian stretching rates ð1=�Þðd�=dtÞ. Considering this
equation in the Stratonovich interpretation [27], this multi-
plicative noise structure implies that z ¼ lnð�Þ is normally
distributed and that p�ð�Þ is log-normal, in agreement with

the computed elongation distributions [Fig. 2(b)]. With
the initial condition �ðt ¼ �aÞ ¼ 1, we obtain by integra-
tion of (11)

� ¼ ðt=�aÞ
 exp

"Z t

�a

dt0
ffiffiffiffiffiffi
2�

t0

s
�ðt0Þ

#
: (12)

The mean elongation is h�ðtÞi ¼ ðt=�aÞ
þ� and thus
� ¼ 
þ �. The parameters of Eq. (11), measured from
the computed Lagrangian elongations, are 
 ¼ 0:7 and

FIG. 2 (color online). (a) Temporal evolution of the average
elongation h�i for permeability field variances �2

lnK ¼ 1
(red triangles) and �2

lnK ¼ 4 (blue disks). (b) Elongation PDF

computed at time t2 ¼ 112:5�a for �2
lnK ¼ 1 (red triangles) and

�2
lnK ¼ 4 (blue disks). Fitted log-normal distributions are repre-

sented as black dashed lines. (c) Zoom of the velocity field and
advected line (black lines) for �2

lnK ¼ 4 at time t1 ¼ 12:5�a.
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� ¼ 0:1 for �2
lnK ¼ 1 and 
 ¼ 1:1 and � ¼ 0:15 for

�2
lnK ¼ 4.
From the Lagrangian elongation in (12), we compute �

from (3), which integrates �2. Since the mean squared
elongation increases in time as h�2i ¼ ðt=�aÞ2
þ4�, we
approximate (3) by [28]

� � D�2t

s20ð1þ 2
þ 4�Þ ; (13)

from which we obtain a simple relationship between the
maximum concentration in the lamella in (4) and its cur-
rent elongation

�ð�Þ � c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D�2t

s2
0
ð1þ2
þ4�Þ

r : (14)

The overall concentration distribution of the distorted lines
is thus

pcðc; tÞ ¼
Z �ðcÞ

�ðc0Þ
d�

p�ð�; tÞ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð�; �; tÞfðc; �; tÞp ; (15)

with fðc;�;tÞ¼ln½c=c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð4D�2t=s20ð1þ2
þ4�ÞÞ

q
�,

and �ðcÞ is obtained from (14).
The predictions of (15), which is parametrized by the

measured elongation rate distribution parameters 
 and �
only, are in good agreement with the numerical simulations
for all cases where stretched lamellae constitutive of the
line do not overlap, i.e., at early times or high Péclet
numbers [Fig. 3(a)]. The comparison with the prediction
of a purely diffusive model [inset of Fig. 3(a)] shows that
flow heterogeneity accelerates considerably the temporal
decay of concentration levels through stretching enhanced
diffusive mixing. The small concentration asymptotic

behavior of the concentration PDF is pc/1=½c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=cÞp �,

which is a characteristic of the Gaussian concentration
profiles across each lamella as given in (5). The PDF of
large concentrations is controlled by the PDF of maximum
lamella concentrations pmð�Þ. After the mixing time for
� � 1, the maximum lamella concentration � can be

approximated as � � s0=ð2�
ffiffiffiffiffiffi
Dt

p Þ, as seen from (13) and
(14). Since the elongation distribution is log-normal, the
PDF of the maximum concentration is also approximately
log-normal. Thus, we obtain for the temporal scalings

of the moments of � in this regime h�i / t�
þ��1=2 and
h�2i / t�2
þ4��1, reflecting those of the mean hci and
mean squared hc2i concentrations.

Interactions between lamellae are enforced at later times
and for smaller Péclet numbers, since the average elongation
h�i / t� grows faster than the longitudinal size of the dis-

persion area� / t�=Df in which the line is confined [remem-
berDf � 1 as seen in (10)]. In this regime, the concentration

field is composed of bundles of aggregated lamellae sepa-
rated by regions of low concentration [Fig. 1(c)]. Each

bundle contains, on average, n elementary lamellae. When
the overlap of the lamellae in the bundles is made at random,
the distribution of the maximal concentration cm in the
bundles follows a Gamma distribution [6,23]

pmðcm; tÞ ¼ cn�1
m

h�in�ðnÞ expð�cm=h�iÞ; (16)

where h�i is the average concentration of the elementary
lamellae at time t. Approximating the concentration profile
in each aggregate by a Gaussian spatial profile, the concen-
trationPDFconditioned tocm ispcðcjcmÞ, given by (5). Thus,
the global concentration PDF in this interaction regime is

pcðc; tÞ ¼
Z c0

c
dcm

cn�1
m

h�in�ðnÞ
expð�cm=h�iÞ

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðcm=�Þ lnðcm=cÞ

p (17)

for c � �. This expression is parametrized by the average
number n of lamellae in the bundles and by the average

maximum lamella concentration h�i / t�
þ��1=2.
The number n of lamellae with concentration h�i having

coalesced in the bundles is such that it restores, by addi-
tion, the average mixture concentration hci so that n ¼
hci=h�i. The number of overlaps simply results from the
geometry of the distorted line support: The net length of
the line contour within a disk of radius r is rD2 , and it is

FIG. 3 (color online). (a) Simulated and predicted concentration
PDFs in the stretching enhanced diffusion regime (15) for Pe ¼
8� 104, at times t1 ¼ 12:5�a and t2 ¼ 112:5�a and for �

2
lnK ¼ 1

(continuous red lines) and �2
lnK ¼ 4 (dashed blue lines). The

concentration PDFs are computed over the whole concentration
field. The model predictions are shown as dash-dotted black lines.
The inset shows the prediction of a purely diffusivemodel [Eq. (5),
with � ¼ c0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4�Dt

p
] at time t2. (b) Simulated and predicted

concentrationPDFs in the lamella interaction regime (17) forPe ¼
8� 102, for the same times and log-conductivity variances. The
inset shows the predictions of Eq. (15), which does not account for
the coalescence process, at time t2.
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composed of nðrÞ / rD2=r line elements (or segment
pairs); D2 is the the correlation dimension [29], which
here is D2 � Df. The radius r is the distance below which

two adjacent lamellae are liable to overlap, that is, to merge
by diffusion. After the mixing time, the diffusive profile of

a single lamella increases like
ffiffiffiffiffiffi
Dt

p
, which sets r. Thus,

n ¼ ðt=�DÞðDf�1Þ=2; (18)

with �D ¼ �2=D the diffusion time, setting also the char-
acteristic time for transition to lamella coalescence [21].

The predictions of Eq. (17) are in good agreement with
the numerical simulations in the coalescence regime at times
t > �D [Fig. 3(b)]. In particular, the large concentration
behavior is an exponential decay pc / expð�c=h�iÞ. This
property, which is not observed in the first regime when
the line does not interact with itself, is a charac-
teristic of the coalescence process described by (16). The

low concentration behavior pcðcÞ / 1=½c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=cÞp � results

from the diffusive profiles around the lamella aggregates.
The comparison with the prediction of (15) [see the inset of
Fig. 3(b)], which does not account for the lamella interac-
tions, shows that the coalescence process tends to increase
the intermediate concentration probabilities and to reduce
the probability of high and low concentration levels. The
temporal scaling of the concentration moments in this

regime is hci¼nh�i/t�
þ�þDf=2�1 and hc2i ¼ nðn� 1Þ�
h�i2 þ nh�2i ¼ nðnþ 1Þh�i2 / t�2
þ2�þDf�2 [23].

To conclude, we have offered from first principles a
unified framework for mixing in heterogeneous media.
The concentration distribution from a uniform line initially
tagged in the medium reflects the stretching histories of the
line elements as they travel through the medium, and, at
some point, the interaction between the line elements
dominates the construction mechanism of the concentra-
tion field. The approach can be readily extended to 3D by
considering 2D sheets as elementary structures rather than
1D material lines, as is done here. This description covers
the range of all possible levels of structural heterogeneities
and Péclet numbers, thus embracing the rich diversity of
mixing behaviors in natural media.
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