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A lattice of optical ring resonators can exhibit a topological insulator phase, with the role of spin played

by the direction of propagation of light within each ring. Unlike the system studied by Hafezi et al., [Nat.

Phys. 7, 907 (2011).] topological protection is achieved without fine-tuning the interresonator couplings,

which are given the same periodicity as the underlying lattice. The topological insulator phase occurs for

strong couplings, when the tight-binding method is inapplicable. Using the transfer matrix method, we

derive the band structure and phase diagram, and demonstrate the existence of robust edge states. When

gain and loss are introduced, the system functions as a diode for coupled resonator modes.

DOI: 10.1103/PhysRevLett.110.203904 PACS numbers: 42.60.Da, 42.70.Qs, 73.43.�f

The idea that photonic modes can have nontrivial topo-
logical properties, like topological states of quantum mat-
ter, originatedwithHaldane andRaghu [1,2], who predicted
that a two-dimensional (2D) photonic crystal with broken
time-reversal symmetry can support modes analogous to
those of a ‘‘zero-field’’ quantum Hall gas [3]. This has been
confirmed experimentally, using gyromagnetic photonic
crystals operating at microwave frequencies [4–7]. That
system’s most striking feature is the existence of topologi-
cally protected one-way photonic edge states, which could
be used for on-chip isolation [4]. However, this is difficult to
realize at optical frequencies, where magneto-optic effects
are weak. Different systems supporting topological pho-
tonic modes have subsequently been proposed [8–17]. In
particular, Hafezi et al. [9] studied a lattice of ring resona-
tors, similar to a 2D version of the CROW (coupled reso-
nator optical waveguide) [18], in which the direction of
propagation of light within each resonator acts as a twofold
‘‘spin’’ degree of freedom. In the tight-binding (weak-
coupling) regime, coupling waveguides can be used to
implement spin-conserving hopping between adjacent reso-
nator modes, and phase shifts in these couplers give rise to
an effective vector potential in the tight-binding hopping
amplitudes, with opposite signs for the two spins. With a
choice of phase shifts implementing the Landau gauge
(which is aperiodic in the lattice), the effective magnetic
field can be made uniform and nonzero, which yields a
photonic analog of the integer quantum Hall effect in each
spin sector, with a Hofstadter butterfly spectrum [19] and
topologically protected edge states. Although the system is
reciprocal (time reversal maps the two spin sectors onto
each other), and thus cannot be used as a conventional
optical isolator, Hafezi et al. suggested that the edge states
can serve as robust optical delay lines [9].

The spin-dependent magnetic field in this system is
reminiscent of the topological insulator model of Kane

and Mele [20,21], which has attracted major theoretical
and experimental interest [22]. However, there is one major
difference: the couplings in the Kane-Mele model have
the periodicity of the lattice, and decoupling the two spin
sectors reduces the model to two zero-field quantum Hall
systems [3], with zero net magnetic flux through each unit
cell. In the system of Hafezi et al., the couplings are
aperiodic and decoupled spin sectors act as integer quan-
tum Hall systems; the tight-binding analysis seemed to
imply that the periodic, zero-field system is topologically
trivial [9]. Aperiodic couplings also impose a practical
design challenge, since a variety of different couplers
must be used.
In this Letter, we show that the zero-field resonator

lattice supports a topological insulator phase. When the
interresonator couplings are tuned to large values beyond
the tight-binding regime, the system exhibits one-way edge
states, with nonzero Z2 topological invariant [21]; if the
two spin sectors are decoupled, each acts as a zero-field
system, like the Kane-Mele model [20,21]. The system
therefore behaves as a photonic topological insulator.
Previously, Khanikaev et al. [16] proposed a different
photonic topological insulator, which also did not require
aperiodic couplings, using linear combinations of polariza-
tion states as the spin analog. However, that system relies
on the special properties of metamaterials, whereas the
present one uses ordinary dielectric materials and is thus
considerably more feasible.
Our calculations rely on the transfer matrix method,

which has previously been applied to the CROW [23,24],
and has a wider domain of validity for such systems than
the tight-binding method [24]. This method also lets us
easily study the effects of gain and loss, which can produce
behaviors not easily obtainable in electronic topological
insulators. We focus on the PT (parity or time-reversal)
symmetric lattice [25], which contains balanced amounts
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of gain and loss. Theoretical and experimental studies have
shown that PT-symmetric lattices possess unusual proper-
ties, including bifurcations between real and complex
bands [26–31]. We show that in a PT-symmetric photonic
topological insulator, one edge state can be amplified while
the back-propagating state of the same spin, on the oppo-
site edge, is damped. The lattice thus acts as a robust
optical diode for CROW modes.

The resonator lattice is shown schematically in Fig. 1.
A ring resonator occupies each site of a square lattice. Its
modes have a twofold ‘‘spin’’ corresponding to the propa-
gation direction within the ring. As proposed in Ref. [9]
and depicted in Fig. 1(c), waveguides can be used to couple
these modes to those on neighboring resonators. For our
purposes, it is useful to employ a more abstract represen-
tation for this coupling. We first assume no spin mixing—
modes couple only to other modes of the same spin—and
restrict our attention to a single spin. Let n � ðxn; ynÞ
denote a lattice site, nþ x the site one unit in the þx̂
direction, etc. We specify the coupling between the reso-
nators at n and nþ x with complex numbers rnx, r

0
nx, tnx,

and t0nx; similarly, we specify the coupling between n
and nþ y by rny, r

0
ny, tny, and t0ny. These relate the wave

amplitudes in the resonator—see Fig. 1(a)—according to

Snx
an

bnþx

" #
¼ dnþx

cn

" #
;

Sny
dn

cnþy

" #
¼ bnþy

an

" #
e�2i�;

(1)

where

Sn� ¼ rn� t0n�
tn� r0n�

" #
: (2)

Here, and in the following, the dummy index � may stand
for x or y. The parameter � is the phase delay across each

quarter of the ring. The Sn�’s, which have the form of

scattering matrices, express the most general form of linear
spin-conserving coupling between rings. In principle,
the coefficients frn�; r0n�; tn�; t0n�g can be independently

varied by tuning the underlying waveguides [32]. In an
experimental system, � and the coupling coefficients
would depend on frequency, but here we treat them as
independent quantities; when calculating the band struc-
ture, � plays the role of frequency [24].
Consider the special case where the coupling

coefficients vary between different sites according to

rn� ¼ r�e
iA

�
n ; t0n� ¼ t0�;

tn� ¼ t�; r0n� ¼ r0�e�iA
�
n :

(3)

Here, Ax
n and Ay

n play the role of a magnetic vector poten-
tial. These gauge relations generalize those used in
Ref. [9], which involved phase differences in tight-binding
hopping amplitudes. Suppose the vector potential corre-
sponds to a uniform rational magnetic flux through
each unit cell: Ax

n þ Ay
nþx � Ax

nþy � Ay
n ¼ 2�P=Q, where

P and Q are integers. For Q ¼ 1, i.e., integer flux through
each unit cell, the band structure is the same as in the zero-
field (Ax

n ¼ Ay
n ¼ 0) system. Then the magnetic unit cell

coincides with the lattice’s unit cell, and there are solutions
of the form [19,24]

anþ� ¼ eiðK�þA
�
n Þan; bnþ� ¼ eiðK�þA

�
n Þbn; (4)

where K� is a Bloch wave vector. Combining Eqs. (1)–(4)

gives [32]

e�4i� � Be�2i� � C ¼ 0;

B ¼ r0xt0yeiKx þ rxtye
�iKx þ txr

0
ye

iKy þ t0xrye�iKy ;

C ¼ ðrxr0x � txt
0
xÞðryr0y � tyt

0
yÞ: (5)

As we shall see, for unitary couplings this gives rise to four
real bands in the periodic space � 2 ½��;��: two in
[� �=2, �=2] from directly solving Eq. (5), and the other
two by adding ��. This result relies crucially on the fact
that in Eq. (3) there is no phase variation in tn� and tn�.

The coupler shown in Fig. 1(c) satisfies this condition if the
sum of the phase delays on its two arms is kept constant
[32]. For noninteger fluxes (Q � 1), the current approach
gives essentially the same results as Ref. [9]: we could
impose the Landau gauge Ax

n ¼ ðP=QÞyn and Ay
n ¼ 0, and

define a Q� 1 magnetic unit cell for which anþQx ¼
eiðKxþPynÞan and anþy ¼ eiKyan, and similarly for b. This

gives 4Q bands, analogous to Landau levels.
In the remainder of this Letter, we focus on the zero-field

(integer flux) system. If the couplings conserve energy,
then Sy� ¼ S�1

� . We expect the band structure �ðKx; KyÞ
to be real (for Kx and Ky real), and this is easily proven

using the parametrization

(a)

(c)

(b)

FIG. 1 (color online). (a) Schematic of couplings between
neighboring ring resonators showing the wave amplitudes enter-
ing into the coupling relations (1). (b) Schematic of the resonator
lattice over several periods. (c) Schematic of a coupling wave-
guide which can produce the couplings shown in (a); f�;�; �; �g
label the wave amplitudes in the waveguides, and fc 1; c 2g the
phase shifts, which are used in the calculation of the coupling
coefficients [32].
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r� ¼ sin��e
i	�; t0� ¼ � cos��e

ið’��
�Þ;

t� ¼ cos��e
i
� ; r0� ¼ sin��e

ið’��	�Þ;
(6)

where �� 2 ½0; �=2� and 	�, 
�, ’� 2 ½0; 2��. Equation
(5) then simplifies to e�4i ~� þ 2iYe�2i ~� � 1 ¼ 0, where

Y � sin�x cos�y sin ~Kx � cos�x sin�y sin ~Ky;

~� � �þ ’x þ ’y

4
;

~Kx � Kx þ ’x

2
� 	x þ

’y

2
� 
y;

~Ky � Ky þ
’y

2
� 	y � ’x

2
þ 
x:

(7)

For real K�, jYj � sinð�x þ �yÞ � 1, and the bands are

�þ ¼ m�� ’x þ ’y

4
þ 1

2
sin�1½YðK�Þ�;

�� ¼ n�� ’x þ ’y

4
þ 1

2
f�� sin�1½YðK�Þ�g:

(8)

The above calculation also yields the phase diagram.
Band-crossing points occur where the inequality saturates:
�x þ �y ¼ �=2, or equivalently jrxj2 þ jryj2 ¼ 1. This

defines a boundary between two insulator phases. To
show that one of these phases is topologically nontrivial,
we specialize to ’� ¼ 	� ¼ 0, 
� ¼ �=2, and

�x ¼ �y ¼ �, so that

Y ¼ � 1

2
sin2�½cosKx þ cosKy�: (9)

The projected band diagram for a semi-infinite strip can be
calculated similarly [32], with results shown in Fig. 2.

For � < �=4, the system is a trivial insulator; although
Fig. 2(a) exhibits edge states for some �, these are two-
way edge states, and for each� there are states confined to
the same edge at different Kx, with positive as well as
negative group velocities. For � > �=4, the system is a
topological insulator. The edge states span the band gaps,
and for the given spin (clockwise) there is a positive veloc-
ity upper edge state and a negative velocity lower edge state
(Fig. 3). In a real system, where the model parameters
depend on the frequency !, the topologically nontrivial
band gaps would correspond to frequencies for which
�ð!Þ>�=4. We have verified, using finite-difference
time-domain simulations, that this strong-coupling regime
can be achieved with realistic resonator and waveguide
designs [32].
It is noteworthy that the topological insulator phase

occurs only when the interresonator coupling is sufficiently
strong. This phase does not appear in the tight-binding
analysis, where the zero-field system appears to be topo-
logically trivial [9]. The transfer matrix method, however,
accounts for the wave amplitudes at different parts of each
ring, which is needed to describe the edge states of the
topological insulator phase. Roughly speaking, these edge
states move in the same direction in which light propagates
inside the upper (lower) half of the uppermost (lowermost)
ring resonator of the strip.
Spin mixing can be induced by backscattering within the

resonators or waveguides [9]. This lifts the spin degeneracy
of the edge states [32], similar to the Rashba term in
electronic topological insulators [20,21]. If the couplings
remain unitary and reciprocal (i.e., absent radiative loss
and magneto-optic disorder), the states on each edge are
time-reversed partners, and the resulting band structure has
a nonzero Z2 topological invariant [32].
We have studied the effects of incorporating gain

and loss into the photonic topological insulator, which
yields behaviors that are inaccessible in the electronic
system [26]. In particular, we consider here the0
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FIG. 2 (color online). Projected band diagram of a semi-
infinite resonator lattice, with ten cells in the y direction. The
spin sectors are decoupled; the model parameters are given by
Eq. (6) with ’� ¼ 	� ¼ 0, 
� ¼ �=2, and �x ¼ �y ¼ �. Band

crossing occurs at � ¼ �=4, and the system is a topological
insulator for � > �=4. For � ¼ 0:4�, the points labeled A and B
at � ¼ �=4 indicate the edge states plotted in Fig. 3.
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FIG. 3 (color online). Semilog plot of edge state intensity
versus y lattice coordinate demonstrating edge confinement.
The edge states labeled A (filled circles) and B (open circles)
have equal � ¼ �=4, and occur at Kx ¼ �1:587, respectively.
The parameters are the same as in Fig. 2, with � ¼ 0:4�. The
spins are clockwise, as depicted in Fig. 1. The intensities are
defined as the value of ðjanj2 þ jbnj2 þ jcnj2 þ jdnj2Þ=4 in each
resonator.
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PT-symmetric case, which corresponds to putting
‘‘balanced’’ gain and loss in symmetric regions of the
unit cell. PT-symmetric photonic systems have previously
been studied experimentally, e.g., using lossy waveguides
[28] and optical fiber systems [31]. In the present system,
the transfer matrix method can be adapted to include gain
and loss simply by making the coupling matrices nonuni-
tary. Specifically, the matrices obey the PT-symmetry
relation [33–35]

PT S�PT ¼ S�1
� : (10)

Here, P and T are parity and time-reversal operators. We
choose P ¼ ½0; 1; 1; 0� and T to be the complex conjuga-
tion operator; for the coupler shown in Fig. 1(c), setting
c 2 ¼ c �

1 satisfies Eq. (10). The S�’s can then be parame-

trized by r ¼ jrjei’, t0 ¼ �jtjeið’�’0Þ, t ¼ jtjeið’þ’0Þ, and
r0 ¼ jr0jei’, where jrr0j þ jtj2 ¼ 1 [36]. For simplicity, we
set ’ ¼ 0 and ’0 ¼ �=2, so that

r ¼ e� sin�; t0 ¼ i cos�;

t ¼ i cos�; r0 ¼ e�� sin�;
(11)

where � characterizes the amount of gain and loss.
Figure 4 shows the effects of PT-symmetric gain and

loss on the edge states of the photonic topological insula-
tor. We assume no spin mixing; � is varied for the x
couplings, while the y couplings are kept unitary (� ¼ 0)
[37]. For the bulk bands, Eq. (11) causes Kx to be replaced
by Kx � i� in the solution (9), so that the bands are real for
Kx ¼ m�,m 2 Z, and complex otherwise. The edge states
on opposite edges of the semi-infinite strip, which have
opposite velocities, acquire the same imaginary component
to Kx, and are, respectively, amplified and damped. This
has a simple interpretation. The upper edge state’s wave
amplitude is multiplied by rx each time it hops one ring to
the right; for �> 0, jrxj> 0 and hence the state is

amplified. Likewise, the lower edge state is damped
by r0x with each leftward hop. Previous studies of
PT-symmetric waveguides have shown that modes with
different transverse profiles can be selectively amplified
and damped [28], but in those waveguides each amplified
(damped) mode has a counterpropagating partner which is
amplified (damped) by an equal amount. Here, the edge
states have no counterpropagating partners of the same
spin.
Figure 5 shows the transmittance between waveguides

coupled to opposite ends of the finitePT-symmetric lattice.
Left-to-right transmission is amplified, while transmission
in the opposite direction is damped. Within the band gaps,
the transmission is insensitive to disorder, due to the topo-
logical protection on the edge states. In Fig. 5(b), we test
the effect of removing this topological protection by per-
forming the calculation with the lattice width reduced to a
single unit cell; the resulting transmission is considerably
less stable, varying by an order of magnitude for the same
values of � [32]. In terms of the underlying waveguides,
the system is reciprocal, but it can nonetheless serve as a
diode element for CROW modes. Such modes are suscep-
tible to backscattering, even in the absence of spin flipping
[9]; this is a particular problem in slow-light applications
[38]. A photonic topological insulator can offset the effects
of backscattering loss by robustly amplifying forward
modes and damping backward modes. Unlike the
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FIG. 4 (color online). Amplification and damping of edge
states in the PT-symmetric resonator lattice. � is the gain-loss
parameter defined in Eq. (11). All other parameters are the same
as in Fig. 2, with � ¼ 0:4�. Both edge states acquire the same
value of Im½Kx�, so one is damped and the other amplified. Inset:
intensity profiles for the lower edge state (filled circles) and
upper edge state (open circles) at � ¼ 0:2.
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FIG. 5 (color). Transmittance across a disordered PT-symmetric
resonator lattice. (a) Schematic. (b) Transmittance from port A to
B0 (blue) for a one unit cell wide lattice, which has no topologi-
cal protection. (c,d) Transmittance leftward from B to A0 (red),
and rightward from A to B0 (blue), when the lattice is five unit
cells wide as shown in (a). Reflectances are shown in grey. In
(b)–(d), the lattice is five cells long, and transmittances are
plotted for 20 disorder realizations, where each coupling has
random � distributed uniformly in [0:2�, 0:5�]. The x couplings
have � ¼ 0:5.
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PT-symmetric diode of Ref. [39], this device does not
require optical nonlinearity.
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