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We present a search for chargino-neutralino associated production using like electric charge dilepton

events collected by the CDF II detector at the Fermilab Tevatron in proton-antiproton collisions at
ffiffiffi
s

p ¼
1:96 TeV. One lepton is identified as the hadronic decay of a tau lepton, while the other is an electron or

muon. In data corresponding to 6:0 fb�1 of integrated luminosity, we obtain good agreement with standard

model predictions and set limits on the chargino-neutralino production cross section for simplified

gravity- and gauge-mediated models. As an example, assuming that the chargino and neutralino decays

to taus dominate, in the simplified gauge-mediated model we exclude cross sections greater than 300 fb at

95% credibility level for chargino and neutralino masses of 225 GeV=c2. This analysis is the first to

extend the LHC searches for electroweak supersymmetric production of gauginos to high tan� and

slepton next-to-lightest supersymmetric particle scenarios.

DOI: 10.1103/PhysRevLett.110.201802 PACS numbers: 12.60.Jv, 13.85.Qk, 13.85.Rm, 14.80.Ly

Supersymmetry (SUSY) is an appealing extension to the
standard model (SM) of particle physics, as it mitigates the
hierarchy problem, provides a dark matter candidate, and
allows for gauge-coupling unification at high energy [1–8].
Extensive searches for SUSY phenomena have been per-
formed at the LEP [9], Tevatron [10–15], and LHC [16–21]
colliders. To date, no evidence of SUSY has been found.
The LHC analyses provide stringent limits on the SUSY
partners of light quarks and the gluon, the squarks and the
gluino, with mass limits in excess of 1 TeV=c2. Typical
searches assume strong production of squarks and gluinos
with cascade decays to the gauginos (the SUSY partners of
the electroweak gauge and Higgs bosons, the charginos and
neutralinos), followed by hadronic or leptonic decays.
These final-state particles are accompanied by two or
more of the lightest SUSY particle (LSP), that is stable if
Rp parity is conserved [22]. In the minimal supersymmet-

ric standard model with gravity mediation, the LSP is often
the lightest neutralino ~�0

1, which provides a cosmological

dark matter candidate. Alternatively, in gauge-mediated
models [23,24], the gravitino plays the role of the LSP,
and the phenomenology depends on the nature of the next-
to-lightest SUSY particles. If these are the SUSY lepton
partners (sleptons), their decays lead to detectable leptons.

Both models produce an appreciable momentum imbal-
ance in the plane transverse to the beam direction due to the
undetected LSPs [25].
Given the lack of evidence of strongly produced SUSY

particles, searches for direct electroweak production of
charginos and neutralinos are particularly well motivated
at present. This production can lead to the striking signa-
ture of sparse events with two or three leptons and a
transverse momentum imbalance. Most SUSY searches
also assume tan� & 10, where tan� is the ratio of the
vacuum expectation values for the two Higgs doublets,
which results in similar gaugino decay widths to electrons,
muons, and tau leptons. At high values of tan�, e.g.,
tan� ’ 30, appreciable left-right mixing drives the mass
of the lighter SUSY tau particle (stau, ~�) to lower values
and results in enhanced branching fractions to taus as two-
body decays become kinematically accessible. As the
value of tan� is a free parameter of the theory, searches
sensitive to tau leptons can play a critical role in the search
for SUSY phenomena. ATLAS [26] and CMS [27] have
recently published searches for SUSYelectroweak produc-
tion with leptonic decays. ATLAS searches for trilepton
signals with electrons and muons in the final state and does
not consider tau-enriched scenarios. CMS searches for
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dilepton and trilepton signals including those with had-
ronic tau decays and places bounds on flavor-universal and
tau-enriched scenarios. While these results are generally
more stringent than what is possible at the Tevatron, there
are regions of parameter space still unexplored by the LHC
experiments. These include the high tan� case, where all
gaugino decays produce taus, and gauge-mediated scenar-
ios with slepton next-to-lightest SUSY particles. The cur-
rent situation provides strong motivation for this analysis,
which probes these unexplored regions for the first time.

This Letter reports the results of a search for chargino-
neutralino (~��

1 ~�0
2) associated electroweak production

yielding tau-dominated final states using data collected
with the CDF II detector at the Fermilab Tevatron p �p
collider at a center-of-mass energy of 1.96 TeV. The analy-
sis considers a single W-boson-mediated s-channel ampli-
tude, while the t-channel squark exchange amplitude is
insignificant with the assumption of heavy squarks, as
motivated by the LHC limits. Using a simplified frame-
work [25], we study two distinct cases. In the first, chargi-
nos decay promptly into a single lepton through a slepton

~��
1 ! ~‘�ð�Þ�‘ ! ~�0

1‘
��‘, and neutralinos similarly decay

into two detectable leptons ~�0
2 ! ~‘�ð�Þ‘� ! ~�0

1‘
�‘�. The

second case assumes the same gaugino decays, followed by

the gauge-mediated slepton decays ~‘ ! ‘ ~G, where ~G is the
LSP gravitino. Both cases yield events with three electri-
cally charged leptons accompanied by undetectable parti-
cles. However, requiring the detection of all three leptons
would degrade the search sensitivity, especially for the
case of decays to tau leptons, which is the focus of this
analysis. Instead, we require detection of either an electron
or muon plus a hadronically decaying tau lepton. Tau
leptons decay hadronically, with a branching fraction of
about 65%, as � ! Xh��, where Xh is a system of hadrons
consisting of charged and neutral pions or kaons. A like-
sign (LS) requirement on the light lepton (e, �) electric
charge and net electric charge of the tau decay products
efficiently rejects prominent SM backgrounds such as Z
boson, WW bosons, and top-antitop quark production,
which yield opposite-sign (OS) leptons. We perform a
counting experiment, compare the yield of LS lepton-tau
events in data with SM background predictions folded with
sources of misidentified taus, and validate the results with
control samples of OS events. In this Letter, ‘‘lepton’’ and
‘‘tau’’ (or �) refer to e or � and hadronically decaying tau
leptons, respectively. The LS signature is common in many
SUSYmodels. Our search has sensitivity for high tan� due
to a dedicated tau reconstruction and since the identified e
or � can result from a leptonic tau decay.

The CDF II detector is described in Ref. [28]. The
innermost components are multilayer silicon-strip detec-
tors and an open-cell drift chamber tracking system cover-
ing j�j< 1 [29] inside a 1.4 T superconducting solenoid.
Surrounding the magnet are sampling electromagnetic and
hadronic calorimeters, segmented in projective-tower

geometry, covering j�j< 3:6. Strip-wire chambers in the
central electromagnetic calorimeter at a depth approxi-
mately corresponding to the maximum development of
the typical electromagnetic shower aid in reconstructing
electrons, photons, and �0 ! �� decays in the region
j�j< 1:1. At larger radii are scintillators and wire cham-
bers for muon identification: the central muon (j�j< 0:6)
and the forward muon (0:6< j�j< 1) detectors.
Data corresponding to an integrated luminosity of

6:0 fb�1, collected between 2002 and 2010 by a dedicated
online event-selection (trigger) [30], are used. This trigger
requires a charged particle reconstructed with the silicon
and drift chamber detectors with pT > 8 GeV=c matched
to an electron (muon) signal in the central electromagnetic
calorimeter (central or forward muon detector) and an
additional isolated charged particle with pT > 5 GeV=c
that seeds the tau reconstruction. At trigger level a charged
particle is isolated if no additional charged particles with
pT > 1:5 GeV=c are reconstructed in the annular region
between 10 and 30 degrees around the track direction. No
requirement on the relative charge of the lepton and tau is
imposed at the trigger level, providing a control sample.
The total trigger efficiency is the product of the effi-

ciency for selecting a tau and the efficiency for selecting a
lepton. These are determined by using independent data
samples of multijet and high-pT lepton events [28,31]. Jets
are sprays of hadronic particles produced in the fragmen-
tation and hadronization of quarks and gluons and are
clustered by using a fixed-cone algorithm [32] with a

radius �R¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2þð�	Þ2p ¼0:4. Jets with ET>8GeV
and j�j< 2:5 are used. Here, �� (�	) is the difference
relative to the jet axis in � (	) space. Comparison with
simulated Z ! �� events yields a trigger efficiency for real
taus inside the detector-acceptance region of ð91� 3Þ%
[31]. The trigger efficiencies for reconstructed electrons,
central muons, and forward muons are ð96:0� 0:3Þ%,
ð86:6� 0:7Þ%, and ð89:9� 0:7Þ%, respectively [28].
These efficiencies include a degradation by less than
10% with an increasing number of overlapping p �p inter-
actions per bunch crossing that occur at high-luminosity
Tevatron operations.
The event selection proceeds as follows. Electrons

(muons) are required to satisfy an ET (pT) requirement
of 10 GeV (GeV=c), along with quality criteria to increase
the purity of the samples [28]. In particular, electrons and
muons must be isolated in the tracker and calorimeters,
satisfying �pT

iso < 2:0 GeV=c and Eiso=ET < 0:1 or
Eiso < 2:0 GeV. Here �pT

iso is the sum of the transverse
momenta of any additional charged particles in a cone of
radius �R ¼ 0:4 around the candidate lepton, and Eiso is
the additional energy deposited in the calorimeters in the
same cone. Hadronic tau decays are identified as systems
of one (‘‘one-prong’’) or three (‘‘three-prong’’) charged
particles in a narrow cone, pointing toward a central calo-
rimeter cluster with j�j< 1. Momenta of photons from
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neutral pions are reconstructed by using the central
shower-maximum detector. The visible transverse energy
of the tau candidate, defined as pT� ¼ �pT tracks þ �ET�0 ,
must be greater than 15 ð20Þ GeV=c for one-prong
(three-prong) taus. Upper thresholds on the tau invariant
mass and calorimeter or tracker activity in an isolation
annulus built around the highest pT (leading) track reduce
contamination from quark and gluon jets. Additional
criteria on the ratio of deposited calorimeter energy to
leading track pT reject electrons and muons that could
mimic the signal [33].

The event energy-imbalance transverse to the beam

direction ( ~6ET) is defined by ~6ET ¼ �P
iE

i
Tn̂i, where the

sum is over all calorimeter towers with j�j< 3:6 and n̂i is a
unit vector perpendicular to the beam axis and pointing at

the ith calorimeter tower. We also define 6ET ¼ j ~6ETj. To
reduce the considerable backgrounds from the production
of multijet events, we use a requirement on the scalar sum
(HT) of pT of the tau, pT of the lepton, and 6ET . We require
HT > 45 GeV (50 GeV) for one-prong tau plus muon
(electron) events and HT > 55 GeV for events with
three-prong taus [34]. We require�	ð‘; �Þ> 0:5 to ensure
that the lepton and tau isolation cones do not overlap and
remove events with OS same-flavor leptons consistent with
Z boson decay.

Depending on the relative charges of the lepton and the
tau, events that pass the selection are divided into an OS
control region and an LS signal region. The OS control
region is mainly composed of SM processes yielding real
taus, such as Drell-Yan, t�t, and diboson production, plus
events with jets misidentified as taus. These large back-
grounds would overwhelm any potential SUSY signal. For
the LS signal region, events with misidentified jets are
dominant; these include events with a W boson produced
in association with jets (W þ jets), multijet production,
and events with photon conversions to eþe� pairs.
Because of the kinematic similarity between the SUSY
signal and W þ jet events, the latter dominates the back-
ground composition. Backgrounds from lepton or tau
charge mismeasurement are insignificant [28].

Backgrounds are estimated by using a combination of
Monte Carlo simulations and data-driven methods. The
most significant backgrounds after the LS requirement
are due to jet misidentification and are determined directly
from data. We use the PYTHIA 6 Monte Carlo simulation
[35] to generate samples of events that produce genuine
taus from diboson, t�t, and Z boson processes, while
W ! �� events are generated by using ALPGEN 2.10’ [36]
interfaced with PYTHIA for parton showering and hadroni-
zation. These samples are processed with the CDF II de-
tector simulation based on GEANT 3 [37]. The sample sizes
are normalized to their SM cross sections [38] and are
appropriately scaled to account for Monte Carlo-data dif-
ferences in trigger, identification, and reconstruction
efficiencies.

The jet-to-tau misidentification rate is determined by
using jet-triggered events in data to account for the domi-
nant background processes, extending the treatment in
Refs. [33,39]. As quark jets and gluon jets are misidentified
as taus with different probabilities, we apply a correction
for gluon-jet-dominated �þ jets events with � ! eþe�
[34]. We parametrize the misidentification rates in terms of
��, the number of tracks in the tau signal cone, and the
total ET in the tau signal and isolation cones and apply
these rates to jets in events that satisfy the remaining
selection criteria to determine this contribution to the final
event sample. We verify this technique by using data
samples enriched in multijet events, selected by requiring
at least 3 GeV=c (GeV) of additional pT (ET) in the
tracking system (calorimeters). We also verify this tech-
nique in W þ jets events, by requiring a W-like event
topology, and in �þ jets events, by requiring � ! eþe�.
The main source of systematic uncertainty arises

from the jet-to-tau misidentification rate, taken as the
misidentification-rate difference between the leading and
second-highest-pT jets (25%). These jets are the most
likely to be misidentified as taus. Less significant are
uncertainties on the SM background processes cross sec-
tions (ranging from 2% to 10%) and the uncertainty on the
integrated luminosity (6%). The 30% uncertainty on the
photon-conversion-finding efficiency has only a minor ef-
fect on the final result. We consider a possible systematic
uncertainty on the reconstructed tau energy by comparing
pT spectra for one- and three-pronged taus in data and
simulated W ! �� samples. The best agreement is

TABLE I. Backgrounds and observations in data for the OS
control region and LS signal region. The signal region values
include the HT requirement described in the text. For each entry,
the statistical, followed by the systematic, uncertainty is given.
The signal corresponds to the simplified gauge-mediated model,
with 
ð~��

1 ~�0
2Þ ¼ 300 fb, mð~��

1 Þ ¼ mð~�0
2Þ ¼ 200 GeV=c2, and

mð~‘Þ ¼ 160 GeV=c2. For this specific scenario, the optimized
requirement is 6ET > 98 GeV.

Process OS events LS events ( 6ET > 20 GeV)

Z ! �� 6967� 56� 557 10� 2� 1
Jet ! � 4527� 27� 1065 1153� 15� 283
Z ! �� 263� 20� 21 � � �
Z ! ee 83� 9� 7 � � �
W ! �� 372� 12� 36 97� 6� 10
t�t 36:3� 0:3� 5:1 0:7� 0:0� 0:1
Diboson 61� 1� 6 4:3� 0:2� 0:4

Total 12 308� 67� 1202 1265� 17� 283
Data 12 268 1116

Signal 64� 1� 6
Optimized 6ET requirement ( 6ET > 98 GeV)

Total background 6� 1� 1
Signal 10� 1� 1
Data 3
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obtained by shifting the tau energy scale in the simulation
by 1%. Finally, the uncertainty on the hadronic jet-energy
scale leads to a 1.5% systematic uncertainty on the recon-
structed tau energy for events with real taus.

The background determination is validated by using
the OS control region. Results are given in Table I and
show good agreement in both the OS control region and in
the LS signal region. Figure 1 shows representative kine-
matic distributions for the OS control region and the LS
signal region.

Given the good agreement between the data and the
background prediction, we interpret the results as exclusion
limits on the rates of SUSYprocesses.We set upper limits at
95% credibility level (C.L.) on the cross section for

chargino-neutralino production as a function of chargino
mass (assumed mass degenerate with ~�0

2), slepton mass,

LSP mass (for the case of the simplified gravity-mediated
model), and branching fraction of the chargino
(and neutralino) to the stau. Limits are extracted by using
a Bayesian technique and incorporating the systematic
uncertainties described above [40]. We generate SUSY sig-
nal samples by using MADGRAPH [41]. For each set of signal
parameters we optimize the 6ET requirement above 20 GeV
to minimize the median value of the excluded cross section
assuming the observation exactly matches the background
prediction (expected limit). The chosen value accounts for
the various differences between the SUSY particle masses,
while the 20 GeV minimum value is motivated by the
selection in Ref. [10]. Table I also shows a comparison of
an example signal with the background expectation and data
before and after this requirement. Representative cross-
section upper limit contours are shown in Figs. 2 and 3 for
simplified gauge- and gravity-mediatedmodels.We emulate
the effect of raising tan� by directly altering the branching
fraction of the chargino and neutralino to a stau and consider
both 33% and 100%, corresponding to lepton universality
and tau-dominated scenarios, respectively. For the simpli-
fied gravity-mediated model, we determine limit contours
for mð~�0

1Þ ¼ 120 and 220 GeV=c2. As the chargino and

neutralino masses increase, the cross-section limits for
both models become more stringent due to the increased
acceptance and then vanish at the Tevatron kinematic limit
for new particle production, corresponding to 1.96 TeV for
the mass sum for all produced particles. The gaps in exclu-
sion at high mass between the exclusion curves and the
kinematic limits, shown as diagonal lines, are due to the
tau and lepton pT requirements as well as the optimized 6ET

requirements for each mass pair.
In summary, we search for a like-sign lepton-tau signal in

CDF run II data corresponding to 6:0 fb�1 of integrated
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FIG. 1 (color online). Distribution of (a) tau cluster ET and
(b) �	ðe; 6ETÞ for OS eþ � events. Distribution of (c) 6ET for LS
(signal-region) �þ � events. Overlaid is a signal distribution
corresponding to the simplified gauge-mediated model, with

ð~��

1 ~�0
2Þ¼3000fb for visibility, mð~��

1 Þ¼mð~�0
2Þ¼200GeV=c2,

and mð~‘Þ ¼ 160 GeV=c2.
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FIG. 2 (color online). Expected and observed contours of
constant 95% C.L. cross-section upper limit in the chargino-
slepton mass plane assuming the simplified gauge-mediated
model for BFð~� ! �þ XÞ ¼ 100%. The shaded region corre-
sponds to cross-section limits of 
ð~��

1 ~�0
2Þ � 300 fb, as a func-

tion of the gaugino and slepton masses.
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luminosity. This distinctive signature is expected to be
sensitive to SUSY models with direct chargino-neutralino
associated production. Observing no significant excess of
events in the data over standard model background predic-
tions, we set upper limits on the cross section for this SUSY
process as a function of the sparticle masses and branching
fractions to taus. Our results, presented in simplified
gravity- and gauge-mediated frameworks, are complemen-
tary to SUSY searches that require substantial hadronic jet
activity. This analysis also constrains regions of electro-
weak gaugino production at high tan�, where decays to taus
dominate, and gauge-mediated parameter space with slep-
ton next-to-lightest SUSY particles for the first time.
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