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It is generally believed that the spontaneous breaking of the Poincaré group by flux tubes (strings)

generates only two zero modes localized on the string and associated with the spontaneous breaking of

translational invariance (the so-called Low-Manohar argument). Being perfectly true in many instances

this argument is nevertheless nonuniversal and has to be amended in the case of order parameters carrying

spatial indices. We show that under certain circumstances additional zero (or quasizero) modes can appear

due to spin symmetry.
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The Goldstone theorem [1] relating spontaneously bro-
ken global symmetries to the Goldstone particles (massless,
or gapless excitations) is one of the important theoretical
cornerstones. If the pattern of the symmetry breaking is
G ! H, where G is an internal symmetry group and H is
its subgroup the number of the Goldstone particles is �r ¼
dimG� dimH in the relativistic theories (with the disper-
sion law E� p) and �nr ¼ ðdimG� dimHÞ=2 in the non-
relativistic theories (with the dispersion law E� p2) [2].
This fact is widely used both in high-energy and condensed-
matter theories. The above counting is inapplicable,
however, to geometric (space-time) symmetries [3] (and
references therein). For instance, four-dimensional scalar
electrodynamics with the Higgs potential for the complex
scalar field enjoys the full Poincaré symmetry, with ten
generators. The Abrikosov-Nielsen-Olesen string [4]
breaks the Poincaré group down to the two-dimensional
‘‘Poincaré group’’ (three generators) times U(1) (one gen-
erator). Naively one may expect six zero modes. However,
we have only two Goldstone excitations on the string world
sheet (one in the nonrelativistic case) due to the fact that not
all broken generators are independent operators on the
string world sheet [3].

In this Letter we will show that the analysis of the
spontaneous breaking of the geometric (space-time) sym-
metries [3] contains a subtle point that can invalidate the
above common wisdom and lead to the occurrence of extra
moduli fields (gapless excitations, Goldstone particles) on
the string world sheet. Such extra moduli fields can appear
in models with the order parameters carrying spatial indi-
ces, such as those relevant for superfluidity in 3He (see,
e.g., [5]). This example was studied in the recent publica-
tion [6], which in fact inspired the general consideration
presented below.

The necessary and sufficient condition for the extra
massless excitations to appear on the string world sheet is
the existence of a limit in which a spacial symmetry of the
bulk (e.g., the O(3) rotation symmetry) becomes enhanced
and (a part) of the enhanced symmetry acts as an internal

symmetry spontaneously broken on the string. In these
circumstances the O(3) part of the Poincaré group which,
being spontaneously broken, is not represented by indepen-
dent gapless excitations in the standard treatment [3],
acquires its own non-Abelian moduli fields, the Goldstone
bosons localized on the string. (Nonperturbative effects
tending to generate a mass gap in two dimensions can be
made arbitrarily small, see below.)
While our assertion bears a general nature, it is conve-

nient to explain its origin using a simple model suggested
in [7]: scalar quantum electrodynamics supporting the
Abrikosov-Nielsen-Olesen strings (Abrikosov strings in
the nonrelativistic case) amended by a real scalar spin-1
field. The Lagrangian will explicitly break the Lorentz
boost part of the Poincaré group, but this is irrelevant for
the phenomenon under consideration. We will focus on the
spontaneous breaking of the O(3) rotational part.
The model is described by an effective Lagrangian

L ¼ Lv þL�; (1)

where

Lv ¼ � 1

4e2
F2
�� þ jD��j2 � Vð�Þ;

V ¼ �ðj�j2 � v2Þ2
(2)

and

L� ¼ @��
i@��i � "ð@i�iÞ2 �Uð�;�Þ; i ¼ 1; 2; 3;

(3)

U ¼ �½ð��2 þ j�j2Þ�i�i þ �ð�i�iÞ2�; (4)

with self-evident definitions of the fields involved, the
covariant derivative, and the kinetic and potential terms.
One can consider both, relativistic and nonrelativistic
kinetic terms. For definiteness we will focus on the first
choice. The parameter "will be treated as adjustable, while
all other constants e, �, �, �, and v can be chosen at will,
with some mild constraints (e.g., v >�) discussed in [7].
The model design is conceptually similar to that of the
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superconducting cosmic strings in [8]. (The only difference
is the ‘‘second’’ scalar field: in [7] it is real and has three
components while in [8] it is a complex field similar to �.)

In the vacuum� develops an expectation value�vac¼v,
while �i does not condense. The global symmetries of
the vacuum state are four translations and three O(3)

rotations, in addition to the U(1) gauge symmetry which
is implemented in the Higgs mode because the complex

field � is condensed.
If we disregard the �i fields, the model under considera-

tion is theAbelianHiggsmodelwhich supports conventional

flux tubes (strings), see, e.g., [9]. They are topologically
stable because of nontrivial windings of the � field. The

minimal flux tube is associated with a single winding.
In the core of such a tube the � field tends to zero with

necessity. Switching on the �i fields we observe that this

implies the � field destabilization [8] in the core [as
follows from Eq. (4)]. Hence, inside the core the � field

no longer vanishes.
Our ‘‘two-component’’ flux tube (string) spontaneously

breaks two translational symmetries, in the perpendicular

x, y plane, and O(3) rotations. The latter are spontaneously
broken by the string orientation along the z axis [more

exactly, Oð3Þ ! Oð2Þ], and by the orientation of the spin
field �i inside the core of the flux tube.

In order to establish implications of this symmetry

breaking let us start from the limit " ! 0. In this limit, if
we forget for a short while about the �i fields, the breaking

Oð3Þ ! Oð2Þ produces no extra Goldstone modes on the
string world sheet. We have only two translational modes,

because the order parameter is scalar, and the action of the
broken rotational generators reduces to that of translational

generators [3].
However, due to the fact that � � 0 in the core, the

presence of the � component in the string solution leads to

the occurrence of two extra moduli on the string world
sheet. Indeed, in the limit " ! 0 the rotational O(3) sym-

metry is enhanced [6]; as a matter of fact, one adds inde-
pendent O(3) rotations of the spin field �i to the coordinate

spacial rotations.
The spin symmetry is (spontaneously) broken down to

O(2) on the string solution. This latter breaking gives rise
to the two-dimensional O(3) sigma model [equivalent to
the CP(1) model] on the string world sheet [whose target
space is Oð3Þ=Oð2Þ]. As a result, in addition to two trans-
lational moduli we have two orientational moduli in the
case at hand. Numerical calculations supporting the above
assertion of the spontaneous breaking Oð3Þ ! Oð2Þ in the
string core will be presented elsewhere [10].

Now, let us leave the limit" ¼ 0, and seewhat happens at
" � 0. If " is small, to the leading order in this parameter,
we can determine the effectiveworld-sheet action using the
solution obtained at " ¼ 0. Note that at " � 0 three Lorentz
boosts are explicitly broken in Eq. (4). In addition, two
distinct O(3) rotations mentioned above become entangled:

Oð3Þ � Oð3Þ is no longer the exact symmetry of the model,
but, rather, an approximate symmetry.
Implications on the string world sheet will ensue. Upon

reflection it is easy to see that the term "ð@i�iÞ2 lifts the
degeneracy on the target space of the world-sheet O(3)
sigma model. The low-energy effective action on the string
world sheet is

S ¼
Z

dtdzðLOð3Þ þLx?Þ;

LOð3Þ ¼
�
1

2g2
½ð@aSiÞ2 þ "ð@zS3Þ2�

�
�M2½1� ðS3Þ2�; (5)

Lx? ¼ T

2
ð@a ~x?Þ2 þ ~M2ðS3Þ2ð@z ~x?Þ2; (6)

where ~x? ¼ fxðt; zÞ; yðt; zÞg are the translational moduli
fields, three orientational (quasi)moduli fields Siðt; zÞ are
constrained (i ¼ 1, 2, 3),

SiSi ¼ 1; (7)

a ¼ t, z, are the string world-sheet coordinates, and T is
the string tension. The constants g2 and M2; ~M2 are

g2 � ��; ~M2 �M2 � "�2=�; (8)

assuming �2 � v2. If " ! 0 (i.e., M2 ¼ 0) we recover the
standard O(3) sigma model, with the target space
Oð3Þ=Oð2Þ and two moduli fields (gapless excitations).
With nonvanishing but small " the gapless rotational exci-
tations become quasigapless (note that M2 � "). (We
assume that M2�T. At weak coupling in the bulk ��1
and, hence, g2 � 1.) The two-dimensional Lorentz boost
is no longer a symmetry, since (as was mentioned above),
the Lorentz boosts are explicitly broken by the "ð@i�iÞ2
term in four dimensions, see Eq. (4).
In high-energy physics M2 is referred to as the twisted

mass [11]. In condensed matter the " ¼ 0 limit of LOð3Þ is
known as the Heisenberg antiferromagnet model. Then the
last term in Eq. (5) can be interpreted as an external
magnetic field of a special form giving rise to an isotropy
term (e.g., [12] and discussion therein).
The impact of the mass term in Eq. (5) depends on the

sign of M2 (inherited from "). If M2 is positive the ground
state of the theory—the vacuum—is achieved at S3 ¼ �1;
i.e., the spin vector in the flux tube core is aligned with the
tube axis (the so-called easy axis). If M2 is negative, the
ground state is achieved at S3 ¼ 0; i.e., the spin vector is
perpendicular to the axis [12] (the so-called easy plane).
Then the vacuum manifold is developed (S1), the string
becomes axially asymmetric, and instead of two quasigap-
less excitations we have one quasigapless and one classi-
cally gapless. (It can acquire a mass gap, though, through
the Berezinskii-Kosterlitz-Thouless phase transition.)
So far we have discussed the theory on the string world

sheet in the classical approximation. It is well known [13]
that in the " ! 0 limit the model (5) is asymptotically free
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and develops a dynamical mass gap � as a result of
infrared dynamics. The value of this mass gap is deter-
mined by the value of g2 and can be made arbitrarily small
with the appropriate choice of parameters. If � is smaller
than M the discussion above remains valid. Otherwise, the
mass gap is determined by �.
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