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We show that a one-dimensional discrete time quantum walk can be used to implement a generalized

measurement in terms of a positive operator value measure (POVM) on a single qubit. More precisely, we

show that for a single qubit any set of rank 1 and rank 2 POVM elements can be generated by a properly

engineered quantum walk. In such a scenario the measurement of a particle at a position x ¼ i

corresponds to a measurement of a POVM element Ei on a qubit. Since the idea of quantum walks

originates from the von Neumann model of measurement, in which the change of the position of the

pointer depends on the state of the system that is being measured, we argue that von Neumann

measurements can be naturally extended to POVMs if one includes the internal evolution of the system

in the model.
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Introduction.—Discrete time quantum walk is a process
in which an evolution of a quantum particle on a lattice
depends on a state of an auxiliary system (coin). In the
simplest version of a one-dimensional quantum walk
the coin is a two-level system. The particle moves either
one step to the left or to the right depending on the state of
the coin. Between subsequent steps the state of the coin
evolves, which after many steps of the walk results in
nontrivial correlations between the coin and the particle’s
position and in a spatial probability distribution that in
general cannot be reproduced by classical random walks
[1–11].

A single step of an initially localized quantum walk can
be considered as a projective von Neumann measurement
of the coin, because if one finds the particle at position
x� 1 one knows that the state of the coin corresponds to the
‘‘right or left shift.’’ However, in general one can allow the
system to evolve for more than one step before the position
measurement is done. In this case the particle can be found
in more than two different positions and one may ask
whether the measurement of the particle at position x ¼ i
corresponds to some generalized measurement of the qubit,
i.e., a positive operator value measure (POVM) on the coin
state. In this work we investigate such a possibility.

POVMs allow one to gain more information from a
single measurement than the standard von Neumann pro-
jective measurements. Their wide applicability include
discrimination of quantum states [12,13] and quantum
state tomography in terms of symmetric informationally
complete (SIC) POVMs [14,15]. POVMs were proposed
and realized for a number of physical systems [16–20].
Physically, POVMs correspond to projective measure-
ments on a joint system of the system of interest and an
ancilla whose state is known. Mathematically, POVM ele-
ments Ei are given by Ei ¼ Tranc½ð1 � �Þ�i�, where 1 is
the identity operator on the Hilbert space of the system, �

the state of an ancilla,�i the von Neumann projector on the
joint Hilbert space, and one traces out an ancillary system.
The probability of measuring the ith POVM element on
a state � is given by pi ¼ TrðEi�Þ. In addition to the
non-negativity condition Ei � 0, the complete set of mea-
surement operators has to have the resolution of identity;
therefore, POVM elements obey

P
iEi ¼ 1. Finally, the

postmeasurement state of the system corresponding to

the ith outcome of POVM is given by Mi�M
y
i =pi, where

Ei ¼ Myi Mi and the form of Mi is determined by the state
of ancilla and the projector�i on the joint Hilbert space. In
this Letter we propose an implementation of a general
single-qubit POVM by means of a quantum walk in which
the role of the ancilla is played by the position of the
particle in the lattice, while the coin plays the role of the
qubit itself.
For a one-dimensional discrete time quantum walk the

state of the system is described by two degrees of freedom
jx; ci, the position of the particle x ¼ . . . ;�1; 0; 1; . . . and
the coin c ¼ ! ,  . Since the dynamics of the system
is discrete, one step is given by the unitary operator
Uðt; tþ 1Þ ¼ TCðx; tÞ, where

T ¼X
x

jxþ 1;!ihx;! j þ jx� 1; ihx; j (1)

is the conditional translation operator and Cðx; tÞ is a coin
operator whose action in general can depend on position
and time

Cðx; tÞjx;!i ¼ cðx; tÞjx;!i þ sðx; tÞei’jx; i;
Cðx; tÞjx; i ¼ s�ðx; tÞjx;!i � c�ei’ðx; tÞjx i;

(2)

where the above complex parameters obey jcðx; tÞj2 þ
jsðx; tÞj2 ¼ 1 for all x and t and ei’ is a complex phase
factor. Throughout the Letter we use the notation j!i ¼
ð1; 0ÞT and j i ¼ ð0; 1ÞT .
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Quantum walks are computationally more efficient than
their classical counterparts and were shown to be able to
efficiently solve a number of problems [21]. In particular, it
was shown that they are capable of universal quantum
computation [22,23]. Moreover, quantum walks have
been implemented in the laboratory in many different
physical systems and by now experimentalists have sub-
stantial control over the evolution of the walker [24–35]. It
is therefore of great importance to investigate and to
exploit all the possibilities that quantum walks can offer.

Unambiguous state discrimination.—We start with an
example of a simple quantum walk whose few steps can be
interpreted as the unambiguous state discrimination proto-
col (an additional example of SIC-POVM generation is
provided in the Supplemental Material [36]). Imagine that
one is given one of two nonorthogonal pure qubit states
with equal a priori probabilities. The goal is to find which
of the two states was given. We consider three possible
answers to this test: it is definitely state 1, it is definitely
state 2, or I do not know.

Now, let us introduce a quantum walk capable of
achieving this goal. First, we note that it is always
possible to encode two nonorthogonal pure states as
jc�i¼cosð�=2Þj!i�sinð�=2Þj i, where �2½0;ð�=2Þ�.
We set the given state as the initial coin state and we
initialize the walk with the particle located at the origin.
For the first step we choose the coin operator to be trivial
Cðx; 0Þ ¼ 1; hence, the state after one QW step is

jc�ð1Þi ¼ cos
�

2
j1;!i � sin

�

2
j � 1; i: (3)

For the next step the coin operators are

Cð�1; 1Þ ¼ 0 1

1 0

 !
;

Cð1; 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
z

z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
0
@

1
A;

(4)

where z ¼ tanð�=2Þ, and identity elsewhere; therefore, the
state after coin operation is

Cðx; 1Þjc�ð1Þi ¼
ffiffiffiffiffiffiffiffiffiffi
cos�
p j1;!i
þ sin

�

2
j1; i � sin

�

2
j � 1;!i (5)

and, after translation,

jc�ð2Þi ¼
ffiffiffiffiffiffiffiffiffiffi
cos�
p j2;!i þ sin

�

2
j0; i � sin

�

2
j0;!i: (6)

Finally, for the third step the coin operator is the identity
everywhere except for position x ¼ 0, for which it is the
Hadamard operator

Cð0; 2Þ ¼ H ¼ 1ffiffiffi
2
p 1 1

1 �1
� �

; (7)

therefore,

jc�ð3Þi ¼
ffiffiffiffiffiffiffiffiffiffi
cos�
p j3;!i � ffiffiffi

2
p

sin
�

2
j � 1;!i: (8)

As a consequence, if one measures a particle at position
x ¼ 1, one immediately knows that the coin was in the
jcþi state, if at position x ¼ �1 it wasin the jc�i state,
and if at position x ¼ 3 one learns nothing.
Next, we show that the quantum walk corresponding to

the unambiguous state discrimination problem generates
proper POVM elements. We are going to consider only one
POVM element, since the construction of the other two
follows from this example. The initial state of the ancilla
(position) is � ¼ jx ¼ 0ihx ¼ 0j, whereas the projector �i

corresponds to �i ¼ Uyðjx ¼ iihx ¼ ij � 1ÞU. The uni-
tary operator U generates the three steps of the above
quantum walk, and the identity operator acts on the coin
space. In order to evaluate the form of the projector �i one
has to consider the reversed quantum walk evolution due to
Uy on both states ji;!i and ji; i. Finally, in order to
obtain the POVM element Ei one has to consider the
overlap of �i with the ancilla state and then trace over
the ancilla.
Let us consider the POVM element E�1, i.e., the element

corresponding to finding the particle at position x ¼ �1.
We start with the state j � 1; i. The first step of the
reversed evolution corresponds to Cðx; 2ÞyTy. The reversed
translation results in the state j0; i and the application of

the coin operator gives 1=
ffiffiffi
2
p ðj0;!i�j0; iÞ. For the sec-

ond step, the translation gives 1=
ffiffiffi
2
p ðj�1;!i�j1; iÞ and

the coin operation gives 1=
ffiffiffi
2
p ðj�1; i� tanð�=2Þj1;!iþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� tan2ð�=2Þp j1; iÞ. Finally, the last step is just

reversed translation which results in 1=
ffiffiffi
2
p ðj0; i

�tanð�=2Þj0;!iþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tan2ð�=2Þp j2; iÞ. Taking the

overlap with the ancilla state jx ¼ 0i one finds that the
contribution of the above state to the POVM is

1=
ffiffiffi
2
p ðj  i � tanð�=2Þj !iÞ.
On the other hand, it is easy to see that the state j�1;!i

does not contribute to the POVM element, since the reverse
evolution generates a state j � 4;!i that has no overlap
with position x ¼ 0. Therefore, the POVM element is
given by

E�1 ¼ 1

2cos2 �
2

�
cos

�

2
j  i � sin

�

2
j !i

�

�
�
cos

�

2
h j � sin

�

2
h! j

�
; (9)

which is the correct POVM element for unambiguous state
discrimination since E�1jcþi ¼ 0.
Generation of arbitrary rank 1 POVM elements.—Let us

focus on rank 1 POVMs, since higher rank POVMs can be
constructed as a convex combination of rank 1 elements.
We recall that rank 1 elements are of the form Ei ¼
aijc iihc ij, with 0< ai � 1; i.e., they are proportional to
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the projectors onto pure states. We will come back to the
problem of higher rank POVMs at the end of this section.

We propose the following algorithm for the generation
of an arbitrary rank 1 POVM fE1; . . . ; Eng: (1) Initiate the
quantum walk at position x ¼ 0 with the coin state corre-
sponding to the qubit state one wants to measure. (2) Set
i :¼ 1. (3) While i < n do the following: (a) Apply coin

operation Cð1Þi at position x ¼ 0 and identity elsewhere and
then apply translation operator T. (b) Apply coin operation

Cð2Þi at position x ¼ 1,

NOT ¼ 0 1
1 0

� �

at position x ¼ �1 and identity elsewhere and then apply
translation operator T. (c) i :¼ iþ 1. (4) Apply coin op-

erations Cð3Þk at positions x ¼ 2k, k ¼ 0; . . . ; n� 1, and
identity elsewhere. The particular form of the operators

Cð1Þi , Cð2Þi , and Cð3Þk depends on the POVM that one wants to

implement. In the following we give a few more details
about these, and in the Supplemental Material [36] we
prove that they can always be chosen in such a way as to
implement any desired POVM.

Let us analyze the action of the algorithm. The detailed
proof that the algorithm generates arbitrary POVM ele-
ments is given in the Supplemental Material [36]. The walk
is initialized at the origin and the coin state corresponds to
the qubit state that is going to be measured j0i � j�0i.
Here, we assume that the initial qubit state j�0i is pure;
however, our analysis works for mixed states as well (one
has to consider evolution of two pure parts of the mixture).

Next, we set i :¼ 1 and apply the coin operation Cð1Þ1 and

the subsequent translation T evolves the system into a
superposition

�1j1;!i þ �1j � 1; i: (10)

The amplitudes in the superposition depend on the

initial state of the coin and on the operator Cð1Þ1 , i.e.,

�1 ¼ h! jCð1Þ1 j�0i and �1 ¼ h jCð1Þ1 j�0i.
Next, we consider the step 3(b) (i ¼ 1). At position

x ¼ �1 we swap the coin state (NOT operation); therefore,
the particle cannot go to the left beyond x ¼ �1 and is
reflected back to the origin. At x ¼ 1 we apply the

coin operation Cð2Þ1 . After the translation the resulting

state is �01�1j2;!i þ �01�1j0; i þ �1j0;!i, where

�01 ¼ h! jCð2Þ1 j !i and �01 ¼ h jCð2Þ1 j !i. We define an
unnormalized vector j�1i ¼ �01�1j  i þ �1j !i; there-
fore, the state after the step 3(b) (i ¼ 1) is of the form

�01�1j2;!i þ j0i � j�1i: (11)

Next we set i :¼ 2 and go to step 3(a). After the step 3(a)
(i ¼ 2) we have

�01�1j3;!i þ �2j1;!i þ �2j �1; i; (12)

where �2 ¼ h! jCð1Þ2 j�1i and �2 ¼ h jCð1Þ2 j�1i. After
the step 3(b) the state is

�01�1j4;!i þ �02�2j2;!i þ j0i � j�2i; (13)

where we introduced j�2i ¼ �02�2j  i þ �2j !i in an

analogical way to j�1i, and set �02 ¼ h! jCð2Þ2 j !i and
�02 ¼ h jCð2Þ2 j !i.
The two iterations of steps 3(a) and 3(b) show that apart

from the parts of wave function that travel to the right, the
relevant evolution of the walk takes place between posi-
tions x ¼ �1. Moreover, this evolution can be described in

a recursive way using parameters �j ¼ h! jCð1Þj j�j�1i,
�j¼h jCð1Þj j�j�1i, �0j¼h!jCð2Þj j!i, �0j¼h jCð2Þj j!i
and unnormalized vectors j�ji ¼ �0j�jj  i þ �jj !i. It
follows, that once we reach step 4 the state of the system is

j0i � j�n�1i þ
Xn�1
j¼1

�0n�j�n�jj2j;!i: (14)

The operator C2
n�1 is simply identity (see supplementary

material), therefore j�n�1i ¼ �n�1j !i and after the step
4 we have

�n�1j0i � jc ni þ
Xn�1
j¼1

�0n�j�n�jj2ji � jc n�ji; (15)

where �0n�1 ¼ 1 and we have chosen Cð3Þk ¼ jc n�ki�
h! j þ jc n�k;?ih j, being jc n�k;?i the state orthogo-

nal to jc n�ki, so that we get the proper postmeasurement
states. Note that the probability of finding the walker at
positions f0;2;...;2ðn�1Þg is given by N�1fj�n�1j2;
j�0n�1�n�1j2; . . . ;j�01�1j2g, where N ¼ j�n�1j2 þP

n�1
j¼1 j�0j�jj2; also, note that in the Supplemental

Material [36] we prove that, irrespective of the initial state

j�0i, the coin operators Cð1Þk and Cð2Þk can be chosen in such

a way that these probabilities equal the probabilities
fpn; pn�1; . . . ; p1g of any desired POVM. This way, we
arrive to the main result of the Letter: for any single-qubit
POVM, one can engineer a quantum walk in which a
measurement of the walker’s position is equivalent to that
generalized measurement.
Finally, let us discuss the generation of rank 2 POVM

elements. These elements can be constructed as a convex
combination of two orthogonal rank 1 elements. The above
algorithm can be modified in the following way. Imagine
that before the final step 4 the algorithm generated N
POVM elements corresponding to the measurement of
the quantum walker at positions x ¼ 0; 2; 4; . . . ; 2ðN � 1Þ
and that we want to construct a rank 2 element that is a
combination of two orthogonal rank 1 elements ajc ihc j
and bjc?ihc?j corresponding to positions x ¼ 2i and x ¼
2ðiþ 1Þ, respectively. It is enough to apply NOT coin
operation at position x ¼ 2ðiþ 1Þ and then to apply condi-
tional translation. As a result, the two probability
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amplitudes originating from positions x ¼ 2i and x ¼
2ðiþ 1Þ meet at position x ¼ 2iþ 1 and the respective
position measurement corresponds to the rank 2 POVM
element ajc ihc j þ bjc?ihc?j. The other rank 1 POVM
elements are also shifted to the right by a single position;
however, their structure remains unchanged. Finally, note
that the step 4 is analogical and that the coin for the rank 2

element is Cð3Þ ¼ jc ih j þ jc?ih! j.
Discussion.—We proved that discrete-time quantum

walks are capable of performing generalized measure-
ments on a single qubit. The main physical effect
employed in this process is the interference between the
probability amplitudes of the quantum walker. This inter-
ference effect is not present in the standard von Neumann
projective measurement. However, note that the original
idea of discrete-time quantum walks proposed in Ref. [1] is
based on the von Neumann model of measurement. In von
Neumann’s model a pointer of a measuring device is
coupled to an observable on a measured system. The
Hamiltonian of this coupling is given by Hint ¼ gðtÞAP,
where P is the momentum of the pointer, A is the observ-
able one wants to measure and gðtÞ is the time-dependent
coupling strength that is nonzero only during the period of
the measurement. In addition, the system and the pointer of
the device can undergo their own evolution due to
Hamiltonians Hs and Hd, respectively. Nevertheless, the
coupling strength gðtÞ is usually assumed to be much
greater than Hs and Hd, whereas the time of interaction
T is assumed to be very short T ! 0; therefore, the mea-
surement is considered to be impulsive and the evolution of
the pointer and the system due to Hs and Hd is ignored
[37]. The pointer state jc ðxÞi, that is initially localized
around the origin, and the state of the system j’i evolves
into

X
i

�ijc ðxþ gaiÞi � jaii; (16)

where g ¼ R
T
0 gðtÞdt is an average coupling strength, ai are

eigenvalues, and jaii are eigenvectors of A and �i ¼
haij’i. This model indeed resembles the quantum walk,
since the translation of the pointer depends on the other
system.

Apart from the discrete nature of the evolution, the main
difference between quantum walks and impulsive von
Neumann measurements is the fact that the evolution of
quantum walks is extended in time and that the system that
is coupled to the particle or pointer also evolves. Using the
analogy to the von Neumann model, one can say that in the
case of quantum walks the Hamiltonian Hs is not ignored.
On the other hand, the Hamiltonian Hd does not appear in
quantum walks. One of the possible solutions to this prob-
lem can be based on an assumption that the particle or
pointer is very heavy; hence, its natural dispersion requires
much more time than the time of the quantum walk.
Because of the internal evolution the measured system

does not remain in an eigenstate of A and the interaction
Hint causes the pointer to further evolve in time which
eventually leads to an interference that is analogical to
the effect we observe in quantum walks.
The above discussion shows that quantum walks ap-

proximate the von Neumann model that is extended in
time and for which the internal evolution of the measured
system affects the evolution of the pointer of the measuring
device. Furthermore, we showed that if the measured sys-
tem is a qubit and if one can control its internal dynamics,
one can implement an arbitrary POVM. Therefore, one can
naturally extend the von Neumann measurement model to
an arbitrary generalized measurement. Note, that the stan-
dard approach to POVM assumes that von Neumann mea-
surements are performed on an extended system; i.e., the
Hilbert space of the system has to be enlarged. Here, we
show that in principle the extension of the Hilbert space is
not needed. It is natural to ask if this is also true in case if
the measured system is more than two-dimensional.
Another interesting question is, how much control over
the evolution of the measured system is needed in order to
implement an arbitrary POVM. It would be also interesting
to experimentally verify our results. One of the main
problems of experimental setups testing quantum mechan-
ics is how they scale with the dimensionality of the system
that is tested. However, recent quantum walk implementa-
tions use new methods that allow for an efficient scaling of
the experimental setup (see, for example, [27]); hence,
these setups would be natural candidates for an implemen-
tation of our algorithm.
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