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An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace (i.e.,

orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation energy

transfer in light-harvesting systems. A quantum state orthogonal to the trap will exhibit noise-assisted

transfer, clarifying the significance of initial preparation. For such an initial state, the efficiency is

enhanced in the weak damping limit (hti � 1=�), and suppressed in the strong damping limit (hti � �),

analogous to Kramers turnover in classical rate theory. An interpolating expression hti ¼ A=�þ Bþ C�

quantitatively describes the trapping time over the entire range of the dissipation strength, and predicts the

optimal efficiency at �opt � J for homogenous systems. In the presence of static disorder, the scaling law

of transfer time with respect to dephasing rate changes from linear to square root, suggesting a weaker

dependence on the environment. The prediction of the scaling theory is verified in a symmetric dendrimer

system by numerically exact quantum calculations. Though formulated in the context of excitation energy

transfer, the analysis and conclusions apply in general to open quantum processes, including electron

transfer, fluorescence emission, and heat conduction.
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The optimization of the excitation energy transfer (EET)
process presents a challenge for understanding photosyn-
thetic systems as well as for designing efficient solar
energy devices. Multidimensional spectra have allowed
detailed probes of EET dynamics, revealing signatures of
quantum coherence [1–4]. In contrast to the common belief
that noise retards motion and coherence enhances mobility,
the EET efficiency reaches the maximum at an intermedi-
ate level of noise, leading to the notion of noise-enhanced
energy transfer [5–10]. Fermi’s golden rule rate provides a
simple interpretation and suggests that stochastic reso-
nance between the donor and acceptor enhances EET
efficiency [8–10]. Another possible mechanism is that
noise suppresses destructive interference between path-
ways [8,9]. The situation is further complicated by the
findings that initial preparation, coherence of incident pho-
tons, site energy, spatial correlation, static disorder, and
various approximations invoked in quantum master equa-
tions can all play a role in establishing optimal efficiency
[10–15]. Therefore, a general mechanism for optimization
in an arbitrary EET system accompanying all these effects
is clearly needed but has not yet been formulated. In this
Letter, we utilize the concept of trapping-free subspace
(i.e., orthogonal subspace) to bring together all of the
above considerations into a unified framework that allows
us to establish asymptotic scaling relations under both
dynamic and static disorder and construct the generic func-
tional form of optimal EET efficiency.

Model.—We consider a light-harvesting EET system
(see the examples in Fig. 1) described by the quantum
equation of motion for the reduced density matrix of the

single excitation manifold [9] _�ðtÞ ¼ �L�ðtÞ. Here, the
Liouville superoperator L ¼ Lsys þLdissip þLtrap þ
Ldecay comprises four terms, each describing a distinct

dynamic process: (i) the dynamics of the isolated system
Lsys�ðtÞ ¼ ði=@Þ½HS; �ðtÞ�, where HS is the system

Hamiltonian, (ii) the exciton redistribution and dephasing
within the single-excitation manifold Ldissip, (iii) the trap-

ping of excitation energy at the reaction center Ltrap, and

(iv) the decay of the excitation energy to the ground state in
the form of heat or a photonLdecay. Each superoperator can

be represented by a matrix defined in the Liouville space.
A basic property of an EET system is its energy transfer
efficiency q ¼ Tr

R1
0 Ltrap�ðtÞdt, where Tr denotes the

trace over states. For an efficient EET system such as a
light-harvesting protein complex, its nearly unit efficiency
q� 1, implies a clear time-scale separation between the
decay and trapping processes. Under this condition and
with a homogeneous decay rate kd, the transfer efficiency

(a) (c)

(b)

Donor

Acceptor∆ J

FIG. 1 (color online). Various EET systems with the trapping-
free subspace: (a) A donor-acceptor system with a large energy
mismatch (� � J). (b) A homogeneous N-site (N � 1) chain.
(c) A two-generation threefold dendrimer [20].
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can be approximated by q � ð1þ kdhtiÞ�1, where hti ¼
Tr½L�1

0 �ð0Þ� is the average trapping time for the initial

density matrix �ð0Þ, and L0 ¼ Lsys þLtrap þLdissip is

the Liouville superoperator in the absence of decay [9].
The optimization of EET is simplified to the minimiza-

tion of hti. For many EET systems, hti decreases with
increasing � for weak dissipation and diverges with � for
strong dissipation, where � represents a characteristic dis-
sipation strength in Ldissp, e.g., the dephasing rate [5–10].

A representative curve of this dependence is plotted in
Fig. 2(a), where the trapping time hti is minimal at an
optimal noise level �opt. To understand this generic behav-

ior, we investigate the asymptotic scaling of hti in the
strong and weak dissipation limits.

Asymptotics of the trapping time.—In the strong damp-
ing limit (� � 1), quantum coherence is quickly destroyed
by noise, and energy is transferred through incoherent
hops. The hopping rate khop can be estimated from

Fermi’s golden rule, giving khop � jJj2=� for classical

noise, with J the exciton coupling strength. Thus, the
trapping time diverges linearly with �, giving

hti � k�1
hop � �=jJj2: (1)

For a quantum bath, the � dependence of khop becomes

more complicated, exhibiting thermal activation, but can
follow the linear � function in Eq. (1) for relatively large

values of damping, as verified by the computational results
of the hierarchy equation for a dendrimer system in this
Letter.
In the opposite limit of weak damping (� ! 0), energy

transfer can be enhanced by dynamic noise such that hti
decreases with increasing �. Here the starting point for
EET dynamics is the delocalized exciton basis, i.e., eigen-
states of HS. Following the secular approximation, hti is
dominated by the dynamics within the exciton population
subspace, hti � Tr½ðLE

dissip;P þLE
trap;PÞ�1�E

Pð0Þ�, where the
superscript E denotes the exciton representation and the
subscript P denotes the population subspace. However, a
set of excitons �? ¼ fjEiig orthogonal to the trapping
operator LE

trap;ii ¼ 0 is incapable of efficient energy trans-

fer and defines a trapping-free subspace�?. Generally, the
zero determinant for the trapping block matrix

Det½LE
trap;P� ¼ 0 (2)

leads to the divergence of the coherent trapping time
htij�¼0 ¼ 1. The definition of the trapping-free subspace
is a generalization of the invariant subspace [8] and is
closely related to the concept of the decoherence-free sub-
space in quantum information [16]. The system-bath cou-
pling induces interactions between the trapping-free
subspace and other exciton states, resulting in population
depletion from�?. Thus, dissipation of�? dominates the
average trapping time. For nonzero population in �?,
the leading order of hti is given by the survival time in
the orthogonal exciton subspace

hti � X
i2�?

ðLE
dissip;iiÞ�1�E

i ð0Þ=�; (3)

where LE
dissp ¼ LE

dissip=� is the rescaled Liouville super-

operator in the exciton representation, independent of � for
� ! 0. In many EET systems, the orthogonal condition in
Eq. (2) may not be rigorously satisfied, then hti does not
completely diverge in the coherent limit. In general, the
trapping time for weak dissipation can be expanded as

hti � c0 þ c1=ð�þ �1Þ þ c2=ð�þ �2Þ þ � � � ; (4)

where f�1;�2; . . .g is independent of the initial condition,
but fc0; c1; c2; . . .g depends on the initial condition.
Equation (4) recovers the asymptotic 1=� scaling in
Eq. (3) under the condition of �kð�1Þ ! 0.
Generality.—The two scaling relations in the asymptotic

regimes are based on general physical arguments and
independent of specific details such as the system-bath
coupling, bath spectral density, truncation method, and
approximations in the quantum master equation.
Combining Eqs. (1) and (3), we can show that the optimal
condition

�opt �
� X
i2�?

ðLE
dissip;iiÞ�1�E

i ð0Þ
�
1=2jJj / jJj (5)
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FIG. 2 (color online). EET of the dendrimer [Fig. 1(c)] using
the HSR model. (a) The trapping time hti vs the pure dephasing
rate �. For the first initial condition with �? � 0 (see text), the
solid, dashed, and dashed-dotted-dotted lines are the calculation
from Eq. (1), and the calculation from Eq. (3), respectively. The
dashed-dotted line is the result for the second initial condition
with �? ¼ 0 (see text). (b) The functional form in Eq. (6)
(dashed lines) quantitatively fits numerical results of hti (solid
lines) for different site-site couplings, J ¼ 10, 20, 50 meV (from
top to bottom). (c) The optimal � is a linear function of the site-
site coupling J. (d) The transfer efficiency q vs � for the first
initial condition. The dashed line is the exact result while the
solid line is from the approximation using hti [23].
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depends on the system Hamiltonian as well as the initial
condition. The linear J relation in Eq. (5) holds for homo-
geneous systems [see Figs. 1(b) and 1(c)], whereas �opt is

proportional to the energy bias � for strongly-biased sys-
tems [see Fig. 1(a)] due to LE

dissip;ii � J2=�2. The general �

dependence follows the interpolating functional form

hti ¼ A=�þ Bþ C�; (6)

where A, B, C are fitting coefficients. In fact, the optimal
efficiency is analogous to the Kramers turnover in reaction
rate theory, where the two scaling regimes correspond to
energy diffusion and spatial diffusion, respectively [17,18].
The change of the reaction coordinate from energy to
spatial position in classical rate theory corresponds to the
change of basis set from excitons to local sites in energy
transfer theory. However, the analogy to classical rate
theory is limited to the orthogonal subspace and does not
apply to the nonorthogonal subspace, where coherent en-
ergy transfer does not display a turnover.

The trapping-free subspace defined in Eq. (2) can be
realized in various systems. (i) In an inhomogeneous sys-
tem with large energy mismatches [see Fig. 1(a)], the
orthogonality can arise from a vanishingly small overlap
between the donor and acceptor. This situation can be well
described by Fermi’s golden rule and qualitatively explains
the optimal efficiency in Fenna-Matthews-Olson complex
[10,19]. (ii) In a spatially extended system, the orthogo-
nality can arise because the overlap coefficient of a local
site with the trap decreases with the system size, e.g., a
long, homogeneous chain system [see Fig. 1(b)]. (iii) In a
system with intrinsic symmetry, a subset of excitons is
incompatible with the symmetry of Ltrap, thus leading to

orthogonality. The fully connected network [8] and the
dendrimer in Fig. 1(c) are examples of such topological
symmetry. The orthogonality due to symmetry in case
(iii) is rigorous, whereas the orthogonality in cases (i)
and (ii) is approximate. In cases (i) and (ii), hti does not
diverge at � ¼ 0 but can still lead to an optimal efficiency
because of approximate orthogonality. On the other hand,
if the initial state is specially prepared to be orthogonal to
the trapping-free subspace, i.e., �? ¼ 0 in Eq. (3) or
ckð�1Þ ¼ 0 in Eq. (4), the 1=� scaling disappears and hti
is almost a constant minimum in the weak damping limit.
Such a change in the � dependence of hti is observed in the
N-site homogeneous chain as the initial state moves along
the chain.

An example.—To verify the above analysis, we inves-
tigate a two-generation threefold dendrimer depicted in
Fig. 1(c) [20]. A tight-bonding model is used for the system
Hamiltonian, giving HS;ij ¼ "i�ijjiihij þ Jijð1� �ijÞjii�
hjj, where jii represents a localized state at site i. All the
site energies "i are identical and the site-site interaction
Jij ¼ 20 meV are constant for all pairs of connected sites.

The center site is the trap site with rate kt ¼ 5 meV. The
decay process is characterized by a homogeneous rate

kd ¼ 5 �eV. We approximate dissipation by the Haken-
Strobl-Reineker (HSR) model [21,22] and consider homo-
geneous pure dephasingLdissip;ij ¼ ð1� �i;jÞ�, where � is

the pure dephasing rate. The orthogonal subspace of this
dendrimer system consists of seven exciton states. We
compare two different cases of initial preparation. In the
first case, an incoherent population is evenly distributed at
six outer sites with �?ð0Þ � 0. The trapping time is plotted
as a function of � in Fig. 2(a). The divergence of hti in the
strong and weak dephasing limits agrees excellently with
the asymptotic behaviors predicted in Eqs. (1) and (3),
respectively. Furthermore, Eq. (6) can quantitatively
describe the crossover and fit the trapping time for the
complete range of �. The resulting �opt in Fig. 2(c) is

proportional to J, in agreement with Eq. (5). Figure 2(d)
shows that our approximate equation using hti provides a
quantitatively accurate description for the EET efficiency
[23]. In the second case, a coherent state is evenly distrib-
uted at the six outer sites with �?ð0Þ ¼ 0. The trapping
time does not diverge since no initial population exists in
�?. Above a threshold at the intermediate dephasing rate,
hti changes from a plateau to the same linearly increasing
function of �. This calculation confirms that dynamic noise
can enhance the EETonly if components of the initial state
are orthogonal to the trapping process.
Static disorder.—We introduce an energy disorder �"i at

each site i that follows the Gaussian distribution Pð�"iÞ ¼
exp½�ð�"2i =ð2�2

i ÞÞ�=
ffiffiffiffiffiffiffi
2�

p
�i, where �i is the variance of

disorder. The resulting ensemble average is given by
hxi� ¼ �i

R
xð�"iÞPð�"iÞd�"i with x ¼ hti or q. With

the first initial condition, we present the results of hhtii�
and hqi� obtained from a Monte Carlo simulation of 105

samples. As shown in Fig. 3(a), static disorder is irrelevant
in the strong dephasing limit (� � �). In the weak dephas-
ing limit (� 	 � 	 J), static disorder can destroy the
orthogonality in Eq. (2) and induce a large reduction of the
trapping time. However, if the random energy disorder falls

below�0ð� ffiffiffiffi
�

p Þ, the weak orthogonality is preserved and hti
diverges. The new asymptotic relation in theweak dephasing
limit is given by an integral over these small disorders

hhtii� �
Z �0

��0
d�"Pð�"Þhtijj�"j<�0 � c

�
ffiffiffiffi
�

p ; (7)

where �" describes the effective in-phase energy fluctua-
tion over all the sites, Pð�"Þ � 1=� is the probability
distribution, and htijj�"j<�0 � htij�"¼0 � 1=� is approxi-

mately uniform within this regime. The prefactor c
depends on �ð0Þ, HS, and kt. To confirm the asymptotic
relation in Eq. (7), we calculate the weak-dephasing hhtii�
as a function of � for different values of � and rigor-
ously establish the scaling relation predicted in Figs. 3(c)
and 3(d). Interestingly, as shown in Fig. 3(b), the zero
dephasing efficiency hqj�¼0i� is drastically enhanced
from 0.2 to 0.8 with disorder � ¼ J=5. Our calculations
suggest that nature can use both static and dynamic
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disorders cooperatively to achieve efficient and robust
energy transfer.

The quantum Drude-Lorentz bath.—In the above calcu-
lation, the dissipation is modeled by the classical white
noise, i.e., the HSRmodel. To further verify the predictions
of our scaling theory, we consider a quantum bath
described by the Drude-Lorentz spectral density, Jð!Þ ¼
ð2@=�Þ�!!D=ð!2 þ!2

DÞ, where � is the reorganization
energy and!D is the Debye frequency (!�1

D ¼ 50 fs). The
room temperature T ¼ 300 K is applied with the high-T
approximation, cothð�!=2Þ � 2=�!. The quantum dissi-
pative dynamics of the Drude-Lorentz bath can be reliably
calculated using the hierarchy equation of motion [24,25].
In Fig. 4, hti is plotted as a function of �, which represents
the dissipation strength. The results of the Drude-Lorentz
bath follow our scaling theory and agree qualitatively with
the results of the HSR model in Figs. 2 and 3. For weak
dissipation (� 	 1 meV), the trapping time under the first
initial condition (�? � 0) follows 1=� scaling as predicted

by Eq. (3), and the � dependence changes to 1=
ffiffiffiffi
�

p
with the

static disorder (� ¼ 1 meV) as predicted by Eq. (7). Under
the second initial state (�? ¼ 0), the noise-enhanced
energy transfer disappears and hti weakly increases for
� < 0:1 meV. For strong dissipation (� > 1 meV), all
three hti-� dependencies collapse into a single curve,

indicating that classical hopping kinetics is nearly inde-
pendent of initial quantum coherence and static disorder.
After replacing � with �, Eq. (6) can also quantitatively
describe hti over a broad range of �; i.e., the linear �
scaling predicted by Eq. (1) is reliable in the intermediately
strong damping regime (1 meV< �< 40 meV). With the
change of the site-site coupling J, this functional form
remains applicable [see Fig. 4(b)], but the J dependencies
of the coefficients A and C in Eq. (6) become more com-
plicated than those in the HSR model. Consequently, the
optimal �weakly deviates from the linear function of J but
still numerically follows �opt=meV� ðJ=meVÞ1:41 for

J 
 75 meV [see Fig. 4(c)]. In the activation regime (� >
40 meV), hti gradually becomes an exponential function
of � due to the presence of an energy barrier. Therefore,
our scaling theory is applicable to a non-Markovian
quantum bath.
Conclusion.—In this Letter, we demonstrate that the

generic mechanism of noise enhanced EET is to assist
energy flow out of the orthogonal exciton subspace, and
the competition between noise-enhanced EET in the weak
dissipation regime and noise-induced suppression in the
strong dissipation regime leads to an optimal efficiency.
We determine the scaling relations of the average trapping
time in these two regimes and use the asymptotic relations
to interpolate the efficiency over the entire parameter space
and qualitatively predict the optimal noise. The presence of
static disorder reduces the exponent of divergence in the
weak-dissipation limit and thus makes the EET process
more robust against noise. Using the HSR model and the

⊥

Γ1

(a) (c)

(b) (d)

FIG. 3 (color online). (a), (b) The ensemble-averaged EET of
the dendrimer [Fig. 1(c)] in the HSR model with a static disorder
� ¼ 4 meV. (a) The solid line is the simulation result of hhtii�,
referenced by the dotted line without � from Fig. 2(a). The
dashed line is from �?, and the dashed-dotted line is the fitting
result of 1=

ffiffiffiffi
�

p
. (b) hqi� vs �: the solid line is the ensemble

average from the original definition whereas the dashed line is
from the approximation using hhtii� [23]. (c) The weak-
dephasing � dependence of hhtii�, with � ¼ 10�12, 10�11,
10�10, 10�9, 10�8 meV (from top to bottom). Symbols denote
simulation results, whereas the solid lines are fitted with
hhtii� ¼ c0=�. (d) The fitting coefficient c0 (circles) can be
further fitted by c0 ¼ c=

ffiffiffiffi
�

p
(the solid line).

(a)

(b)

(c)

FIG. 4 (color online). (a) The trapping time hti vs the reorgan-
ization energy � calculated by the hierarchy equation, for the
dendrimer [Fig. 1(c)] with J ¼ 20 meV and a Drude-Lorentz
bath. The circles are from the first initial condition, the diamonds
are from the second initial condition, and the squares are from
the first initial condition with a static disorder � ¼ 1 meV. The
1=� and 1=

ffiffiffiffi
�

p
scalings are shown for the circles and squares,

respectively. The solid line from Eq. (6) fits the numerical result
(circles). (b) Equation (6) is used to fit hti for J ¼ 10, 20,
50 meV (from top to bottom). (c) The optimal � approximately
follows �opt=meV ¼ 8:4� 10�3 ðJ=meVÞ1:41 for J 
 75 meV.
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quantum Drude-Lorentz bath, we verify the predictions of
the scaling theory in an example dendrimer system.
Especially, the numerically accurate results using the hier-
archy equation demonstrate the generality of our scaling
theory. Our analysis is not limited to EET but also applies
in general to electron transfer, fluorescence emission, heat
conduction, and other open quantum processes.
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