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We investigate phonon-induced spin and charge relaxation mediated by spin-orbit and hyperfine

interactions for a single electron confined within a double quantum dot. A simple toy model incorporating

both direct decay to the ground state of the double dot and indirect decay via an intermediate excited state

yields an electron spin relaxation rate that varies nonmonotonically with the detuning between the dots.

We confirm this model with experiments performed on a GaAs double dot, demonstrating that the

relaxation rate exhibits the expected detuning dependence and can be electrically tuned over several orders

of magnitude. Our analysis suggests that spin-orbit mediated relaxation via phonons serves as the

dominant mechanism through which the double-dot electron spin-flip rate varies with detuning.
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Controlling individual spins is central to spin-based
quantum information processing [1–3] and also enables
precision metrology [4,5]. While rapid control can be
achieved by coupling the spins of electrons in semicon-
ductor quantum dots [1,2] to electric fields via the elec-
tronic charge state [3,6–15], spin-charge coupling also
leads to relaxation of the spins through fluctuations in their
electrostatic environment. Phonons serve as an inherent
source of fluctuating electric fields in quantum dots [2]
and give rise to both charge and spin relaxation through
the electron-phonon interaction. In GaAs quantum dots,
the direct coupling of spin to the strain field produced by
phonons is expected to be inefficient [16,17]. The domi-
nant mechanisms of phonon-induced spin relaxation are
therefore indirect and involve spin-charge coupling due to
primarily spin-orbit [16–22] and hyperfine [23–28] inter-
actions. Confining an electron within a double quantum dot
(DQD) provides a high degree of control over the charge
state [29–32], so that relaxation rates can be varied over
multiple orders of magnitude by adjusting the energy level
detuning between the dots [26,33–36].

Here, we investigate the interplay of spin and charge
relaxation via phonons for a single electron confined to a
DQD in the presence of spin-orbit and hyperfine interac-
tions. We present a simple model together with measure-
ments of the electron spin relaxation rate in a GaAs DQD,
both of which yield a nonmonotonic dependence on the
detuning between the dots (see Fig. 3). The experiments
provide confirmation of the model and demonstrate the
existence of spin ‘‘hot spot’’ features [19–21,37,38] at
nonzero values of detuning, where relaxation is enhanced
by several orders of magnitude. The opposite behavior is
observed at zero detuning, where the spin-flip rate exhibits
a local minimum. Theoretically, spin hot spots are pre-
dicted to occur due to the complete mixing of spin and
orbital states at avoided energy crossings associated with

spin-orbit coupling [19,20,37]. From a practical stand-
point, adjusting the detuning to these points represents a
potential method for rapid all-electrical spin initialization.
We describe a single electron confined within a DQD

(Fig. 1) using a toy model that includes only the lowest-
energy orbital level of each dot. This two-level approxi-
mation [29] enables the charge degrees of freedom to be
represented by the Pauli matrices �x, �y, �z in the basis

fjLi; jRig, where jLi (jRi) denotes an electron in the left
(right) quantum dot and �z � jLihLj � jRihRj. We can
then express the Hamiltonian of the system as

Hd ¼ H0 þHso þHnuc; (1)

H0 ¼ �

2
�z � t�x ��zSz; (2)

FIG. 1 (color online). Electrochemical potential diagrams for
a DQD, illustrating the measurement cycle used to obtain the
experimental spin relaxation rate (see main text). Varying the
detuning � between the left (L) and right (R) dots while keeping
the tunnel coupling t fixed (stage 3) tunes the relative energies of
the charge states. Tunneling of the electron between the dots is
accompanied by spin rotation.
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Hso ¼ Kso � S�y; (3)

Hnuc ¼ Knuc � S�z: (4)

The first two terms in H0 [Eq. (2)] specify the purely
orbital part Horb � ð�=2Þ�z � t�x of the electronic
Hamiltonian in terms of the energy level detuning � and
the tunnel coupling t between the two dots (Fig. 1).
Diagonalization of Horb yields the eigenstates

jþi � cos
�

2
jLi � sin

�

2
jRi;

j�i � sin
�

2
jLi þ cos

�

2
jRi; (5)

where � varies with � and t according to tan� ¼ 2t=�.
The corresponding eigenvalues are separated in energy by

a gap � ¼ Eþ � E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4t2

p
[see also Fig. 2(a)].

Spin dependence is introduced into the Hamiltonian
via the last term in H0, together with Hso and Hnuc

[see Eqs. (2)–(4)], where the vector of electron spin
operators is denoted by S ¼ ðSx; Sy; SzÞ. The term Hso

describes spin-orbit coupling which is linear in the electron
momentum p. The general form given in Eq. (3) takes into
account both the Rashba [39,40] and the linear Dresselhaus
[41] forms of spin-orbit interaction, with strengths and
orientations that are specified by the vector Kso �
ðr; s; qÞ. Note that Hso acts as �y within the orbital sub-

space, which follows from parity selection rules for the
matrix elements of p in the basis fjLi; jRig. Thus, Hso

describes tunneling between the dots accompanied by a
spin flip (Fig. 1) [13,14].

The remaining spin-dependent terms in Hd represent
forms of the Zeeman interaction that are distinguished by
their action within the orbital subspace. The final term in
H0 represents the coupling of the electron spin to a mag-
netic field of strength B ¼ �z=jgj�B that is uniform over
the two dots, where g is the electron g factor and �B is the
Bohr magneton. The vectorKnuc � ðu; v; wÞ inHnuc speci-
fies the strength and orientation of a magnetic field gradient
across the two dots. Hnuc acts as �z within the orbital
subspace. For GaAs quantum dots, Hnuc can be used to
model the hyperfine interaction between the electron spin
and the ensemble of nuclear spins with which the
electron wave function overlaps. The associated intrinsic
magnetic field gradient is assumed to originate from an
effective nuclear fieldBnuc with a random, spatially varying
orientation described by a Gaussian distribution and
magnitude Bnuc given by the root-mean-square (rms) value
[24–26,28,42].

Figure 1 illustrates the scheme used for the measurement
of the spin relaxation rate. The experimental setup is
described in Ref. [43]. In the first step of the measurement
cycle, a single electron spin is initialized by emptying the
DQD and then letting a single electron tunnel into the left
dot far from the degeneracy of jLi and jRi. The electron

spin is randomly up or down. Next, a voltage pulse adjusts
the electrochemical potential of the right dot to tune the
detuning closer to the degeneracy to a value � for a wait
time �. After the wait time, the electrochemical potential is
pulsed back and the spin of the electron is read out using
energy-selective spin-to-charge conversion [44]. This
cycle is repeated for a given � and � to obtain an average
spin-down probability at the end of the cycle. For each
series of measurements as a function of � at a fixed �, the
amount of detected spin-down is fitted with an exponential
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FIG. 2 (color online). (a) Spectrum of Hd [Eq. (1)] as a
function of detuning � for the case t � �z, in the presence of
spin-orbit coupling (Kso � 0, Knuc ¼ 0). Correspondence with
the eigenstates of H0 [Eqs. (2) and (5)] is indicated for relevant
regions of the spectrum. Avoided crossings due to spin-orbit
coupling occur at � � ��z. The spectrum shown corresponds to
t ¼ 10 �eV [43], B ¼ 6:5 T [43,46], the dot size � ¼ 15 nm
and interdot separation a ¼ 110 nm, the GaAs effective mass
m� ¼ 0:067me (where me is the free-electron mass) and g
factor jgj ¼ 0:36, the Rashba and linear Dresselhaus spin-orbit
strengths �0 ¼ 3:3� 10�12 eV �m and �0 ¼ 4:5� 10�12 eV �
m, respectively, and � ¼ 	=8. The values of �0, �0, and � are
used to determine Kso ¼ ðr; s; qÞ. (b) Dipole-dependent factors
hjdbj2i (dark gray) and hjdej2i (light gray) [Eqs. (8) and (9)] used
to qualitatively model the relaxation rates �b and �e in (a), as a
function of detuning for Bnuc ¼ 0 (solid lines) and Bnuc ¼ 3 mT
(dotted lines), with �0¼3:3�10�14 eV�m and �0 ¼
4:5� 10�14 eV �m. All other parameters are identical to those
used in (a). Units for the dipole are given in terms of the Bohr
radius a0. The dipole model is not valid in the shaded region. (c)
Relaxation rates �a (top curve), �b (dark gray), and �e (light
gray) as a function of detuning. The rates are calculated using

0¼5:3�103 kg=m3, cl¼5:3�103m=s, ct ¼ 2:5� 103 m=s,
�l ¼ 7:0 eV, and � ¼ 1:4� 109 eV=m [21], together with the
parameter values used in (b). Lines are guides to the eye.
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decay, from which the spin relaxation rate at each � is
obtained as shown in Fig. 3.

The variation of the measured spin relaxation rate with
detuning can be understood in terms of the spectrum for the
one-electron double dot. Figure 2(a) shows an example
spectrum for Hd [Eq. (1)] as a function of detuning [45].
In Fig. 2 and throughout the present work, we consider the
limit t � �z which corresponds to the measurements
described above (see Ref. [43]). The notation " , # used to
label the states in the figure refers to the components of
spin along the quantization axis defined by the external
magnetic field. In accordance with the experiment [43,46],
we choose this field to be in the plane of the quantum dots
and parallel to the double-dot axis. The in-plane crystal
lattice orientation characterizing the spin-orbit interaction
[Eq. (3)] is parametrized by an angle � relative to this axis.
Of particular consequence for the present work is the fact
that Hso gives rise to avoided crossings in the spectrum at
� � ��z, where maximal coupling of the states jþ; "i and
j�; #i occurs and leads to the complete mixing of orbital
and spin degrees of freedom. These finite values of �
correspond to spin ‘‘hot spots’’ [19–21,37,38] and are
associated with enhanced spin relaxation rates, as is shown
below.

Including coupling to phonons in the description of the
single-electron double-dot system leads to the Hamiltonian
H ¼ Hd þHep, where

Hep ¼
X
�;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@

2
0V0c�k

s
ðk�l��;l � i�Þða�;k þ ay�;�kÞeik�r

(6)

is the electron-phonon interaction [47] expressed in terms
of the mass density 
0, the volume V0, the phonon speeds

c�, the deformation potential �l, and the piezoelectric

constant �. The operator ay�;k (a�;k) creates (annihilates)

a phonon with wave vector k and polarization � [the sum
over � is taken over one longitudinal (l) mode and two
transverse (t) modes], and ��;l is the Kronecker delta

function. Fermi’s golden rule for the rate � of phonon-
induced relaxation of the electron from state jii to state
jfi of the double dot gives �	 jhfjHepjiij2
ð�dÞ, where

ð�dÞ is the phonon density of states evaluated at the gap
�d between levels i and f that determines the energy of the
emitted phonon.
We first consider a qualitative model for �, where

we estimate the transition matrix element hfjeik�rjii (see
Ref. [43]) by writing eik�r � 1þ ik � r and determining
the corresponding matrix element of the dipole operator
d ¼ �er (here, e denotes the magnitude of the electron
charge). To evaluate dipole matrix elements, we define
Gaussian wave functions c LðRÞðrÞ � hrjLðRÞi which are

shifted along the dot axis by �a=2 for the left-localized
and right-localized orbital states. While c L and c R are not
orthogonal, their overlap is small. We neglect corrections
due to this overlap in our calculations. Using these wave
functions, we find d ¼ Dẑ with D ¼ ðea=2Þ�z. The quali-
tative form of the relaxation rate can then be approximated
by �	 jdj2Fð�dÞ, where d denotes the first-order term of
hfjDjii and Fð�dÞ represents the dependence of the rate on
the gap energy �d (see Ref. [43] for more details).
To identify the states of the double dot between

which phonon-induced relaxation occurs, we treat V �
Hso þHnuc [Eqs. (3) and (4)] as a perturbation with respect
to H0 [Eq. (2)] and use nondegenerate perturbation theory
(which is valid away from � � ��z) to find the first-order
corrections to the energies and eigenstates ofH0. We denote
the corrected states by fjð�;"Þ0i;jð�;#Þ0i;jðþ;"Þ0i;jðþ;#Þ0ig
and consider relaxation of the electron spin from the excited
state jð�; #Þ0i to the ground state jð�; "Þ0i of the DQD [see
Fig. 2(a)], which can occur directly as well as indirectly via
the excited state jðþ; "Þ0i. Away from the avoided crossing
points, we note that jðþ; "Þ0i � jþ; "i and jð�; "Þ0i � j�; "i.
The state jðþ; "Þ0i therefore relaxes rapidly to jð�; "Þ0i, as
effectively only orbital decay is involved and no spin flip
is required in this second step [48]. In the following, we
assume that this charge relaxation is instantaneous compared
to the spin relaxation and use the dipole matrix element for
jð�; #Þ0i ! jðþ; "Þ0i to describe the full indirect transition.
We approximate the relaxation rates�b and�e [Fig. 2(a)]

in the presence of both Hso and Hnuc by calculating the
first-order terms db and de of the dipole matrix elements
hð�;"Þ0jDjð�;#Þ0i and hðþ;"Þ0jDjð�;#Þ0i, respectively. These
terms are functions of the spin-flipping components r, s, u,
and v in Eqs. (3) and (4). Averaging over the nuclear field
distribution [24–26,28]

PðKnucÞ ¼ 1

ð2	b2nucÞ3=2
exp

�
� jKnucj2

2b2nuc

�
; (7)
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FIG. 3 (color online). Experimental detuning-dependent
single-spin relaxation rate (�expt) and comparison with the toy

model described in the present work (�th) for both zero (medium
gray) and finite (dark gray) temperature. Error bars depict 90%
confidence intervals for the data [43]. The parameter values used
to calculate �th are the same as those used in Figs. 2(b) and 2(c).
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where bnuc�jgj�BBnuc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihjKnucj2i=3

p
, gives hui¼hvi¼0

and hu2i ¼ hv2i ¼ b2nuc. We thus find

hjdbj2i ¼
�
ea

2

�
2t

�

�
�z

ð���zÞð�þ�zÞ
�
2

; (8)

hjdej2i ¼
�
ea

2

�
�

�

�
1

���z

�
2

; (9)


 �
�
r2 þ s2 þ

�
2t

�z

�
2ð2b2nucÞ

�
:

These expressions are plotted in Fig. 2(b). Note that both
Eqs. (8) and (9) are undefined at the avoided crossing
points in Fig. 2(a), where � ¼ �z. Thus, the curves shown
in Fig. 2(b) are valid only away from these points (i.e.,
where nondegenerate perturbation theory is a reasonable
approximation). Both hjdbj2i and hjdej2i are only slightly
modified by the coupling of the electron spin to an effective
nuclear field of rms strength Bnuc ¼ 3 mT [26], as
expected from Eqs. (8) and (9) in which the nuclear field
term is scaled with respect to the spin-orbit terms by a
factor ð2t=�zÞ2 � 1 [13]. Saturation of hjdbj2i occurs at
zero detuning for both the Bnuc ¼ 0 and the Bnuc ¼ 3 mT
cases. On the other hand, hjdej2i vanishes at � ¼ 0 regard-
less of the value of Bnuc. As the experimental relaxation
rate contains a local minimum at zero detuning (see Fig. 3),
the present analysis suggests that the direct transition
jð�; #Þ0i ! jð�; "Þ0i alone does not account for the
observed spin relaxation and that indirect relaxation via
the excited state jðþ; "Þ0i potentially plays a significant role
in the spin-flip rate. The relative contributions of the
direct and indirect transitions to the overall rate are
explored in Ref. [43].

To compare our theoretical predictions more directly
with the experimental results, we carry out the full calcu-
lation of the relaxation rates for both direct and indirect
transitions to the ground state by applying Fermi’s golden
rule to relaxation induced by Hep [Eq. (6)]. Details are

given in the Supplemental Material [43]. We set Knuc ¼ 0
for simplicity, as the preceding analysis based on dipole
matrix elements suggests that the hyperfine term Hnuc

represents only a small correction to the decay rate
[see Eqs. (8) and (9), and Fig. 2(b)]. Application of a
Schrieffer-Wolff transformation [49] enables diagonaliza-
tion of the full double-dot Hamiltonian Hd for all �,
including the avoided crossing points � � ��z, and the
eigenstates of Hd are used to calculate the relaxation rates
via Eqs. (S1)–(S3) of Ref. [43].

Relevant portions of the curves for the decay rates �21,
�31, and �32 (where we number the levels according to
their energy eigenvalues and use �if to denote the rate of

relaxation from level i to level f) are plotted together in
Fig. 2(c). The rate �a is associated with mainly charge
relaxation and is given by �21 (�31) for j�j & �z (j�j *
�z), while �b is associated with mainly spin relaxation and

is given by �31 (�21) for j�j & �z (j�j * �z). The rate �e

corresponds to a combination of spin and charge relax-
ation and is given by �32 for all j�j. Note that �a 
 �e,
which is consistent with our prior assumption that the
effective rate for indirect relaxation to the ground state is
determined by �e.
For j�j & �z, indirect spin relaxation occurs by a tran-

sition to the lower-energy intermediate state via phonon
emission [Fig. 2(a)]. On the other hand, the indirect tran-
sition for j�j * �z requires phonon absorption in order to
excite the electron to the higher-energy intermediate state.
Using the Einstein coefficients and the Bose-Einstein
distribution hni ¼ 1=½expð�d=kBTÞ � 1� (where kB is the
Boltzmann constant and T is the temperature) to express
the rates of spontaneous emission, stimulated emission,
and absorption associated with the lowest three double-
dot levels in Fig. 2(a) in terms of �a, �b, and �e [33], we
take the full theoretical detuning-dependent spin relaxation
rate �th to be given by �b þ �e for j�j & �z and by
�b þ �ehni=ðhni þ 1Þ for j�j * �z. This rate is plotted
together with the zero-temperature limit of the model and
the measured rate �expt in Fig. 3 for T ¼ 250 mK [43,46].

At the avoided crossings associated with spin-orbit cou-
pling (� � ��z), we find peaks in �th that resemble the
spin hot spot peaks observed experimentally. The zero-
detuning minimum found in the measurements appears
in both the zero- and the finite-temperature models. In
addition, close qualitative agreement between the finite-
temperature model and experiment is observed for a wide
range of detuning values. While limitations of our theo-
retical description arise from the two-level approximation
we use for the orbital states, we have nevertheless shown
that several characteristic features present in the measured
detuning dependence of the double-dot spin relaxation rate
can be understood within this simple model.
The results of the present work therefore suggest that in

accordance with the case of single lateral GaAs quantum
dots [22], the observed variation of the spin relaxation rate
with detuning in double dots is predominantly due to spin-
orbit mediated electron-phonon coupling. The spin-orbit
interaction may thus provide the key to rapid all-electrical
initialization of single spins.
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spin hot spot in a Si quantum dot [50].
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