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The role of defect-induced zero-energy modes on charge transport in graphene is investigated using

Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies

either equally populating the two sublattices or exclusively located on a single sublattice, all conduction

regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk

disordered graphene. Depending on the transport measurement geometry, defect density, and broken

sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (super-

metallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes,

whereas weak localization and the Anderson insulating regime are obtained for higher energies. These

findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto

controversial.
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The electronic transport properties of graphene are
known to be very peculiar with unprecedented manifesta-
tions of quantum phenomena such as Klein tunneling [1,2],
weak antilocalization [3,4], or the anomalous quantum
Hall effect [5,6], all driven by a �-Berry phase stemming
from graphene sublattice symmetry and pseudospin degree
of freedom [7–9]. These fascinating properties, yielding
high charge mobility [10,11], are robust as long as disorder
preserves a long range character. The fundamental nature
of transport precisely at the Dirac point is, however, cur-
rently a subject of fierce debate and controversies. Indeed,
for graphene deposited on oxide substrates, the nature of
low-energy transport physics (as its sensitivity to weak
disorder) is masked by the formation of electron-hole
puddles [9]. A remarkable experiment has, however, recently
demonstrated the possibility to screen out these detrimental
effects [12], providing access to the zero-energy Dirac phys-
ics. An unexpectedly large increase of the resistivity at the
Dirac point was tentatively related to the Anderson localiza-
tion [12,13] of an unknown physical origin and questioned
interpretation [14].

Of paramount importance are therefore the low-energy
impurity states known as zero-energy modes (ZEMs)
[15,16], whose impact on the Dirac-point transport physics
needs to be clarified. ZEMs are predicted or observed for a
variety of disorder classes, as topological defects (mainly
vacancies) [16,17], adatoms covalently bonded to carbon
atoms [18,19], and extended defects as grain boundaries
[20,21]. As recently confirmed by scanning tunneling mi-
croscopy experiments on graphene monovacancies [22],
ZEMs manifest as wave functions that decay as the inverse

of the distance from the vacancy, exhibiting a puzzling
quasilocalized character, whose consequences on quantum
transport remain, to date, highly controversial. First, ZEMs
have been predicted to produce a supermetallic regime by
enhancing the Dirac-point conductivity above its minimum
ballistic value �min ¼ 4e2=�h [23,24], an unprecedented
conducting state, which could be, in principle, explored
experimentally [25–27]. Second, a similar increase of the
Dirac-point conductivity with defect density has been
also reported in the diffusive regime of two-dimensional
disordered graphene in the presence of vacancies or
adatoms [19,28]. These results contrast with the semiclas-
sical conductivity found with the Boltzmann approach
[17,29–32], and suggest the absence of quantum interfer-
ences and localization effects observed for other types of
disorder [33–35]. Finally, transport experiments in inten-
tionally damaged graphene also report on puzzling con-
ductivity fingerprints, whose physical origin remains to be
fully understood [36,37]. A comprehensive picture of the
role of ZEMs on quantum transport properties in disor-
dered graphene is therefore crucially missing and demands
for further theoretical and experimental inspection.
This Letter provides an extensive analysis of the con-

tribution of zero-energy modes to quantum conduction
close to the Dirac point in disordered graphene. Using
the Kubo-Greenwood and Landauer transport approaches,
different regimes are numerically explored by changing the
aspect ratio of the transport measurement geometry, and by
tuning vacancy density and sublattice symmetry breaking
features. The robustness of the supermetallic state induced
by ZEMs is shown to be restricted to very low densities of
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compensated vacancies (equally distributed among both
sublattices). This occurs as long as tunneling through
evanescent modes prevails. In the absence of contact
effects, an increase of the conductivity above 4e2=�h is
obtained for the semiclassical conductivity at the Dirac
point and ascribed to a high density of ZEMs, but the
quantum conductivity analysis unequivocally reveals a
localization regime. For a totally uncompensated vacancy
distribution (populating a single sublattice), the delocali-
zation of ZEMs in real space is strongly prohibited for a
large energy window around the Dirac point, owing to the
formation of a gap, whereas no appreciable difference of
high energy transport (above the gap) is found compared
with the compensated vacancy case. We would like to
mention that some interesting cases of uncompensated
impurities and defects have been reported experimentally
[38–40], whose results demand further exploration.

System description and methodology.—We consider a
finite concentration n of vacancies either distributed at
random exclusively on one of the two sublattices (nA¼n,
the number of vacancies per carbon atoms in sublattice A
and nB ¼ 0, uncompensated case), or equally distributed
vacancies on both sublattices (nA ¼ nB ¼ n=2, compen-
sated case). The electronic and transport properties are
investigated by using a tight-binding model with a single
pz orbital per atom and first nearest neighbor coupling.
We model the vacancies by removing the corresponding
orbitals from the Hamiltonian [15,16]. To investigate the
various transport regimes, two complementary approaches
are used. For studying two-dimensional (bulk) disordered
graphene, real-space quantum wave packet dynamics, and
Kubo conductivity are calculated [33,34,41–44]. The zero-
frequency conductivity �ðE; tÞ for energy E and time t is
given by �ðE; tÞ ¼ e2�ðEÞ�X2ðE; tÞ=t, where �ðEÞ is the
density of states (DOS) and �X2ðE; tÞ is the mean
quadratic displacement of the wave packet at energy E
and time t:

�X2ðE; tÞ ¼ Tr½�ðE�H ÞjX̂ðtÞ � X̂ð0Þj2�
Tr½�ðE�H Þ� : (1)

A key quantity in the analysis of the transport properties is
the diffusion coefficient DðE; tÞ ¼ �X2ðE; tÞ=t. In disor-
dered systems, DðtÞ generally starts with a short-time
ballistic motion followed by a saturation regime, which
allows us to estimate the transport (elastic) mean-free path
‘e from its maximum value as ‘eðEÞ ¼ DmaxðEÞ=2vðEÞ,
where vðEÞ is the velocity. The semiclassical conductivity
�sc is given analogously by the maximum conductivity.
Depending on disorder strength, DðE; tÞ is found to decay
at longer times owing to quantum interferences, whose
strength may dictateweak or strong (Anderson) localization
at the considered time scale. Calculations are performed for
systems containing several millions of carbon atoms, allow-
ing the capture of all relevant transport regimes. We also
study the ballistic limit of transport through finite graphene

samples, by considering strip geometries with widthW and
length L (withW=L � 1) between two highly doped semi-
infinite ribbons (of identical width). This two-terminal
transport geometry gives access to the contribution of
ZEMs in graphene transport when the charge flow is con-
veyed by contact-induced evanescent modes. The doping
of contacts is simulated by adding an on site energy of
�1:5 eV to the corresponding orbitals, which generates a
large DOS imbalance between the contacts and the central
strip at the Dirac point (E ¼ 0). The zero-temperature
conductivity of the graphene strip is then computed as
�ðEÞ ¼ ð2e2=hÞTðEÞL=W, where TðEÞ is the transmission
coefficient evaluated within the Green’s function approach
[45,46]. When L � W, low-energy transport is dominated
by tunneling through the undoped region yielding a univer-
sal ballistic value�ðE � 0Þ � �min ¼ 4e2=�h at the Dirac
point for clean strips [25–27,45].
ZEMs effects in two-dimensional disordered graphene.—

We start by considering the compensated case, which glob-
ally preserves the sublattice symmetry. Figure 1 (left inset)
gives the density of states of the system as a function of the
energy E for different vacancy densities n. In agreement
with prior results [15,16], the DOS shows the rise of a
broad peak around E ¼ 0, which witnesses the presence of
ZEMs generated by disorder. Their nature, however, is not
encoded in this feature but needs to be analyzed by study-
ing transport characteristics such as the mean-free path
(Fig. 1, right inset) and conductivity (Fig. 1, main frame).
The mean-free path ‘e is seen to be strongly energy depen-
dent with minimum values close to the Dirac point, as
expected for short-range scatterers [43,44]. By increasing
the vacancy density within the range [0.1%, 0.4%], ‘e drops
from tens of nanometers down to few nanometers, and
roughly varies as ‘e � 1=n, which is in agreement with
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FIG. 1 (color online). Main frame: Conductivity of graphene
with n ¼ 0:8% (compensated case): semiclassical value �sc

(solid line), �min ¼ 4e2=�h (dotted line), and Kubo conductivity
at various time scales. Left inset: DOS for varying vacancy
density, together with the pristine case (dashed line). Right inset:
Mean-free paths for n ¼ 0:1%, 0.2%, and 0.4%.
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the Fermi golden rule. Interestingly, we find for the semi-
classical conductivity �sc � E for a high enough energy
(above 0.3 eV for n ¼ 0:8%), whereas it saturates to �min

at low energy with a higher value around the Dirac point
owing to the DOS enhancement induced by midgap states.
When increasing the vacancy density, the minimum con-
ductivity 4e2=�h around the Dirac point extends over a
larger energy region (not shown here).

The obtained short ‘e and minimum semiclassical con-
ductivities suggest a strong contribution of quantum inter-
ferences, which is further evidenced by the decay of the
Kubo conductivity below �min for sufficiently long time
scales; see Fig. 1 (main frame). Depending on the energy,
the observed downscaling of the quantum conductivity ver-
sus time can be described by a logarithmic correction (weak
localization), an exponential decay (strong localization), or
by algebraic localization of the ZEMs. As detailed in the
Supplemental Material [47], the quantum correction to the
conductivity [��ð�Þ¼�ð�Þ��sc] atE ¼ 0:4 eV is numer-
ically found to downscale as ��ð�Þ � �2e2=ð�hÞ lnð�=�eÞ
[with � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�X2ðtÞp

, the time-dependent wave packet space
extension and �e related to ‘e [48]]. Differently, for E ¼
0:2 eV, the length-dependent conductivity exhibits an expo-
nential behavior�� expð��=�Þ (� the localization length),
evidencing a strong-localization regime [13]. Exactly at
the Dirac point, the conductivity decays following a power
law �� ��2. This behavior is actually in full agreement
with the localization of the ZEMs measured experimentally
by scanning tunneling microscopy [22].

A remarkably different picture emerges in the uncom-
pensated case, for which the sublattice symmetry is fully
broken. The DOS shown in Fig. 2 (left inset) evidences the
presence of ZEMs sharply peaked at E ¼ 0. In contrast

to the compensated case, the depletion of the low-energy
conductivity is here inherited from the presence of energy
gaps [15,16]. The semiclassical conductivity strongly
increases when approaching the Dirac point, much more
than in the compensated case and also increases when
improving the energy resolution. However, the large value
of �sc does not reflect the extendedness of the corresp-
onding ZEMs. This can be rationalized by scrutinizing
�ðE ¼ 0; tÞ and DðE ¼ 0; tÞ, which are actually strongly
decaying with time. Indeed, DðE ¼ 0; tÞ becomes
extremely small compared to that at finite energies (e.g.,
at 0.5 eV) and much smaller compared to the compensated
case with the same vacancy concentration (see Fig. 2, right
inset). Additionally, DðE ¼ 0; tÞ decays when improving
the energy resolution (not shown here), thus demonstrating
that although many ZEMs are present, they do not parti-
cipate in conduction, and that the large value of �sc

obtained numerically results from the high DOS at
E ¼ 0. Furthermore, the physical relevance of a semiclas-
sical conductivity at the Dirac point is highly questionable
(see also Supplemental Material [47]). For the quantum
conductivity, on the other hand, the strong decay of
�ðE ¼ 0; tÞ with time is consistent with localized modes
similar to the compensated case. We also find that away
from the Dirac point a higher energy resolution reduces�sc

and �ðtÞ as observed for the DOS, thus unambiguously
indicating the energy gap as the origin of the conductivity
decrease, and ruling out any diffusive regime and
Anderson localization phenomenon. Finally, for larger
energies away from the gap region, one observes that the
wave packet dynamics for the compensated (AB) and
uncompensated (AA) cases are very similar; see Fig. 2
(right inset). This discards any singular transport mecha-
nism in an uncompensated situation, which is different
from previous reports on hydrogenated graphene [49].
ZEMs effects in disordered finite graphene strips.—In

contrast to two-dimensional graphene, the role played by
ZEMs in transport through finite strips in between highly
doped contacts turns out to be quite different. In this
configuration, the contacts have a much higher density of
propagating states than the central strip, especially at the
Dirac point. Accordingly, many states from contacts tunnel
through the strip as evanescent modes, yielding a minimum
ballistic value �min ¼ 4e2=�h for clean samples [25–27].
The presence of ZEMs increases the number of available
states at the Dirac point in the central strip. Two competing
transport mechanisms then drive the conductivity behavior,
namely, an enhanced tunneling probability assisted by
ZEMs together with multiple scattering and quantum inter-
ferences, which develop owing to the randomness of
vacancies distribution.
Figure 3 (main frame) shows the quantum conductivity

� for a strip with length L ¼ 15 nm, width W ¼ 150 nm,
and compensated vacancy density in the range [0%, 2%].
In the absence of vacancies, � shows the minimum
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conductivity �ðE ¼ 0Þ � �0 � �min expected for the bal-
listic limit when L � W (see the horizontal dotted line)
[25]. For n ¼ 0:1%, the strip length is close to the mean-
free path; see Fig. 1. Therefore, the transport along the strip
remains quasiballistic, a fact further confirmed by the
smooth decay of � all over the spectrum except at the
Dirac point, where � keeps a larger value. For higher dens-
ities and away from the Dirac point, the decay of�ðEÞwith
n is consistent first with the occurrence of a diffusive
regime and then with localization phenomena, as revealed
by the strongly fluctuating conductivity. Note that despite
the mean-free path is only a few nanometers short, even for
n¼2%, the conductivity remains significant as a conse-
quence of the large number of conductive channels that
penetrate the undoped strip. The conductivity around the
Dirac point is further scrutinized in Fig. 4 (bottom inset)
for strips with L ¼ 15 nm, W ¼ 150 nm, and compen-
sated vacancy densities up to n ¼ 1%. To reduce sample-
to-sample fluctuations, all the results were averaged over
20 random disordered configurations. Far from the Dirac
point, the conductivity is found to decrease regularly with n.
At E ¼ 0, notably enough, a peak is always present, which
can slightly exceed �0 at very low density (n & 0:04%).
This indicates that the ZEMs generated at theDirac point are
sufficiently delocalized to assist (and even enhance) electron
tunneling through the strip. Backscattering becomes even-
tually dominant for sufficiently high defect concentration,
as manifested by the smooth conductivity decrease. The
dependence of the conductivity peak (�peak) on the different

system parameters is reported in Fig. 4 (main frame) for
compensated vacancy densities up to 5% and lengths up to
15 nm. The decrease of�peak with n is very slow, especially

for the shortest strip, and even for strong disorder, (n ¼ 5%)
�peak remains significantly large. As illustrated in Fig. 4

(top inset), �peak is actually a universal function of n� L2.

Remarkably enough,�peak fluctuates around or goes slightly

above �0 for very low n� L2 & 10, thus supporting

the possibility for a supermetallic state, introduced by
Ostrovsky and co-workers [23,24]. For n� L2 * 10,
�peak decreases roughly logarithmically, as the result of

finite size effects and proximity between vacancies.
The conductivity of graphene strips (withW ¼ 150 nm,

L ¼ 15 nm, and n up to 1%) for uncompensated vacancies
is reported in Fig. 3 (inset). In marked contrast with the
prior case, a gap develops at low density together with a
reduced but finite conductivity peak at E ¼ 0. As for the
case of two-dimensional graphene (Fig. 2), the gap forma-
tion leads to the suppression of tunneling due to the almost
vanishing DOS. The Dirac conductivity peak is a signature
of the highly localized nature of zero-energy states gen-
erated by uncompensated vacancies [16], which are not
enough spatially extended to significantly contribute to
tunneling and obviate to the DOS decrease. More details
on the energy gap scaling and, in general, on the transport
properties away from the Dirac point will be published
elsewhere [50].
In conclusion, the contribution of ZEMs to quantum trans-

port in disordered graphene has been discussed for various
transport geometries and sublattice symmetry-breaking
situations. Our findings provide a broad overview of the
low-energy transport phenomena in graphene in the presence
of ZEMs, including the formation of an insulating state at the
Dirac point, accessible in absence of electron-hole puddles
[12]. The role of electron-electron interaction (here
neglected), might also play some important role in capturing
the full picture and deserves further investigation [51,52].
S. R. acknowledges the Spanish Ministry of Economy

and Competitiveness for national project funding
(MAT2012-33911), and SAMSUNG for support within
the Global Innovation Program.
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