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We present a one-to-one comparison of polymer segmental fluctuations as measured by small angle

neutron scattering in a network under deformation with those obtained by neutron spin echo spectroscopy.

This allows an independent proof of the strain dependence of the chain entanglement length. The

experimentally observed nonaffine square-root dependence of the tube channel on strain is in excellent

agreement with theoretical predictions and permits us to exclude an often invoked nondeformed as well as

affinely deformed tube.
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The development of molecular-statistical theories for
constitutive rubber laws witnessed a significant break-
through with the concept of a mean field tube which
accounts for topological chain-chain interactions. Tube
concepts [1–4] were used for several decades to describe
two principally similar but nevertheless intrinsically
different systems. Entangled melts and rubberlike polymer
networks are similar because for both systems at short
times the topology is determined by the uncrossability of
chains. They differ, however, in the fundamental aspect
that the permanent cross-links of a network additionally
freeze in the chain configurations and trap entanglements.
This quenching of the tube blocks reptation or long time
longitudinal motion along its profile in the network and
limits the dynamics exclusively to local perpendicular
motion. In the pioneering work by Deam and Edwards
[5], the quenched disorder of such a randomly cross-linked
network was successfully accounted for by introducing
a harmonic restoring potential towards the mean configu-
rations of the chains. Additional constraints due to the
chain topology conservation were accounted for by appro-
priate contributions to this restoring potential [3,6].
Classical models of rubber elasticity fail in the consequent
consideration of all constraints and mainly interpolate
between both extremes of noninteracting phantom and
fully affine theory.

For networks in which entanglement contributions still
dominate the mechanical properties, the constraining po-
tential was found to be anisotropic and governed naturally
by the main axis directions of the deformation tensor [3].
The resulting fluctuation scale, which may be identified
as the diameter of a confining tube, thereby showed a
universal nonaffine and nontrivial square-root power law

dependence on strain. This resulting molecular-statistical
approach [3] performs well up to large deformations. The
same under-affine strain dependence was reconfirmed from
theory [7] and from experiment including multiaxial defor-
mation [8]. The latter discredited approaches centered on
restricted junction or chain fluctuations [9,10]. Very
recently, the deformation dependence was revisited by
Milner and co-workers from simulations of stretched rings
[11]. There, the tube deforms, but to a lesser extent than
the square-root law dictates. Furthermore, efforts to treat
cross-linking and segmental fluctuations separately in a
double network proved not particularly sensitive, either
[12]. Experimentally, the length and strain dependence,
on the other hand, were already probed successfully using
small angle neutron scattering (SANS) on deformed net-
works, e.g., in [13].
Despite the important issue as to whether and how

entanglements contribute to the stress-strain properties, a
direct dynamic observation of the fluctuation range on a
microscopic scale and thereby the ultimate proof of their
strain dependence has been lacking to date. Such an ex-
periment is all the more important since the extraction of
fluctuation ranges from static SANS depended on the
complex theoretical background which was applied to
mechanical relaxation data and thus is in the same way
indirect and biased. Direct access to the tube diameter by
quasielastic scattering is therefore highly desirable.
In this work we therefore present the first comprehensive

neutron spin echo (NSE) and SANS study on a deformed
network. NSE experiments on long chain polymer melts
are ideally suited to probe the segmental fluctuations in the
relevant time and space intervals [14]. However, the chal-
lenge of inspecting deformed rubber with high resolution
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neutron spectroscopy has not been realized before. Our
results confirm both the size and the tube deformation

dependence with
ffiffiffiffi
�

p
if the strain is �.

Monodisperse 1,4-polyisoprenes (PI) were anionically
synthesized and characterized by membrane osmometry,
light scattering, and size-exclusion chromatography.
Basically symmetric hydrogenated (H) and deuterated
(D) couples of PI were obtained (H: Mw ¼ 133 kg=mol,
Mw=Mn ¼ 1:02; D: Mw ¼ 135 kg=mol, Mw=Mn ¼ 1:02).
Randomly cross-linked networks were obtained for 50=50
H=D blends using dicumylperoxide as a cross-linker after
solution blending and drying under high vacuum. The
cross-linking was performed at 413 K and yielded a
mesh sizeMc ¼ ð6700� 500Þ g=mol between cross-links,
determined from equilibrium swelling. The network chains
thus carry on average 21 cross-links and 30 entanglement
sections with molecular weight Me ¼ 4500 g=mol. Two
strips of rubber were stretched simultaneously to a macro-
scopic strain � ¼ ð1:3� 0:05Þ and glued in the stretched
state on the inner sides of two quartz plates which were
tightly sealed in a purified argon atmosphere. NSE experi-
ments were performed in isotropic and stretched states at
the IN11 spectrometer, ILLGrenoble, up to Fourier times of

40 ns at two scattering vectors q ¼ 0:121 and 0:148 �A�1.
The samples were placed inside a nonmagnetic environ-
mental chamber at 433 K under a flowing argon blanket.
SANS experiments were performed under identical condi-
tions on the D11 instrument, ILL Grenoble, covering the

full scattering vector range 0:009< q< 0:15 �A�1 in the

2D detector plane. Additionally, a virgin isotropic network
sample at room temperature was measured for reference.

The 2D SANS data were corrected in the standard way
pixelwise and absolutely calibrated with a 1 mm water
standard. The isotropic network serves as the reference

and was characterized by SANS [13]. From a 2D Debye
fit the chain’s radius of gyration in the untreated sample at

RTyieldedRg¼ ð131:2�1Þ �A, which corresponds to a chain

dimension ratio R2
g=Mw ¼ ð0:357� 0:007Þ2 �A2 mol=g for

the used polyisoprene [13,15]. The isotropic NSE sample at

elevated T ¼ 433 K resulted in Rg ¼ ð132:1� 1Þ �A and

agrees with an approximate chain expansion coefficient of

about 10�4=K. The SANS forward scattering intensity
calculated from the sample composition is in very good
agreement with the experimentally extrapolated level

which confirms the absolute calibration of the network
and the absence of isotope interactions. These observations

thus provide the proper basis for an investigation of the
strain dependence of the topology in the rubbers by scat-
tering methods.
The anisotropic SANS data can be described in terms of

a modified Warner-Edwards structure factor [6,13] with an
effective tube from averaging over segment and cross-link
fluctuations. There, dSANS0 , the equilibrium tube diameter,

is inserted a priori deformation dependent as obtained
from free energy considerations in the Heinrich-Straube

model [3] following d� ¼ dSANS0

ffiffiffiffiffiffiffi
��

p
. In the 2D detector

plane representation, the structure factor reads [3,6]
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Z 1

0
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Here, Q� ¼ q�Rg, �� is the microscopic strain along

� ¼ x, y, z direction, and �, �0 are the normalized contour
length coordinates. Isotropic dangling ends of length fe are
accounted for by limiting the double integration to the
tube-constrained section, ½fe � ð1� feÞ� [16]. The well-
known Debye function is retrieved for � ¼ 1 or d� ! 1.

The anisotropy for a given � is entirely determined by fe
and d�. Naturally, Rg is kept to the previously obtained

isotropic value.
As cross-linking fully suppresses large scale transla-

tional diffusion and longitudinal segment motion, the qua-
sielastic scattering is determined by displacements on the
level of the mesh size of the fixed topology. This rubberlike
behavior is treated appropriately within the Des Cloizeaux
approach which is therefore perfectly suited for the inter-
pretation of the NSE data [17,18]. This approach relieves
the shortcomings of the de Gennes approach that is only
applicable to melts [19] in which a longitudinal motion
along the contour of the tube axis dominates, which is
clearly incompatible with permanent networks.

The approach was originally formulated for an isotropic
system in terms of one Cartesian coordinate to represent the
system and its performance illustrated by a suitable com-
parisonwith published isotropic NSE data on an amorphous
polyethylene melt [20]. It can, however, be easily general-
ized to fit the case under investigation here along the main
axes of the deformation tensor of an anisotropic system
simply by replacingq2 ! q2� and xð�; tÞ ! x�ð�; tÞ, where
� denotes a main axis direction and � is as previously
defined. In this case, the mean square average spacing of
the localized and fixed stress points, i.e., themain parameter
of the approach, also transforms as hSi ! hS�i. Its lengthy
derivation is omitted and we only provide here a closed
expression for Sðq; tÞ=Sðq; 0Þ in the limit for t ! 1 repre-
senting the plateau levels in the dynamic structure factor
solely determined by the tube size and the scattering vector,

Sðq;1Þ
Sðq;0Þ ¼ ln

�
1þq2�hS�i

2

��
1

q2�hS�i
þ 1

q2�hS�iþ2

�
: (2)
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On the same basis the static form factor was also derived
[21]. The static comparison with stretched polystyrene data
in SANS was already presented in the literature [22]. In our
case, a description of NSE curves by this approach will
immediately yield the requested length scales. The mean
square fluctuations of a chain segment in the direction �
should then be given by

d2� ¼ 2hS�i=f; (3)

where f is the functionality of the cross-link [23,24]. In this
way, a strong similarity between the Warner-Edwards
model and the Des Cloizeaux approach can be identified
which justifies the comparison of fluctuation ranges and
mean square distances. Since in our caseMe � Mc, i.e., the
entanglement network is dominant, we assume f ¼ 2 as
for an uncross-linked chain. This leads then to the defini-

tion d� ¼
ffiffiffiffiffiffiffiffiffiffi
hS�i

q
used by Des Cloizeaux himself. We note

that consistently this definition underestimates the tube
diameter in both static and quasielastic experiments by

� ffiffiffi
2

p
[18,20,22], but since we are not interested in the

absolute agreement of the numerical value coming from
different methods but merely on the strain dependence, the
proper conclusions can still be drawn.

Figure 1 shows the normalized anisotropic 2D network

SANSdataSðqperp; qparaÞ in theq range 0:01<q<0:12 �A�1

at T ¼ 433 K. This small-to-intermediate q range is sen-
sitive to the tube diameter, and for this reason an overlap
with the length scales accessed in the NSE experiment is
given. Because of the relatively low deformation, the over-
all anisotropy of the SANS data is rather weak and a fit of
d0 and fe is therefore not suitable. We therefore fixed the

tube parameter to dSANS0 ¼ 42 �A, which we found consis-

tently in similarly cross-linked rubbers for deformations up
to even � ¼ 3 [13]. Refining then only the dangling end

fraction, fe ¼ ð0:1� 0:02Þ agrees well with the values
expected from the cross-link density. The 2D representa-
tion in Fig. 1 is favored over the principal axes of defor-
mation due to the rather poor sensitivity of the latter and
the lack of consideration of important off-axis data.
In the subsequent Figs. 2 and 3 we present experimental

data for the normalized intermediate structure factor
Sðq; tÞ=Sðq; 0Þ and the results of simultaneous fits from
both scattering vectors which probe the tube length scale
most sensitively since qd� � 1. Compared to the isotropic

state (Fig. 2), a clear deformation dependence for both q
vectors can be noticed already. The reduced Rouse relaxa-
tion rate Wl4, where W is the elementary Rouse rate and l
is the statistical segment length, was obtained from the
shortest times available in the isotropic experiment to be

ð26450� 1700Þ �A4 ns�1 and was further fixed for the an-
isotropic evaluation. The monomeric friction coefficient �0
in the network state, determined from �0 ¼ 3kBTl

2=Wl4

yields, 3:5� 10�12 Kg=s, which is virtually identical to
the value on a PI melt, 3:8� 10�12 kg=s, scaled to our
temperature [20]. From this comparison we already con-
clude that the dynamics of segments is locally hardly
influenced by the cross-links. A fit of the stress-point

spacing
ffiffiffiffiffiffiffihSip

in the isotropic network then yields the

effective equilibrium tube diameter as d0 ¼ ð38� 1Þ �A,
which is only somewhat smaller than derived from aniso-
tropic SANS measurements, i.e., 42 Å. The near-plateaus
for each q value at the longest times measured are in good
correspondence with the estimated amplitudes at t ! 1
being 0.43 and 0.36, respectively, using Eq. (2).
The dynamic structure factors in the strained state

already visually differ considerably from the quiescent
network data and from each other in the height of the
long time plateau and corresponding decay times. To allow
comparison, the anisotropic NSE data were treated in the

−0.12 +0.12qperp [A
−1

]

D11, T=433K λ=1.3

−
0.12

+
0.12

q
para

[A
−

1]

FIG. 1 (color online). Sðqperp; qparaÞ 2D SANS data for the q
range between 0.01 and 0:12 �A�1, i.e., 0:25< qd < 3:5. The
strain direction was vertical. Solid gray (red) lines are obtained
using the modified Warner-Edwards SANS model.
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FIG. 2. Sðq; tÞ=Sðq; 0Þ versus time at IN11 for the isotropic
reference network sample. The tube size is d0 ¼ 38 �A from the
Des Cloizeaux description at strain � ¼ 1:0 and T ¼ 433 K. The
dashed lines indicate the limit at t ¼ 1.
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same way and the respective tube parameters were fitted
for both q values simultaneously without constraints for
both directions independently. In this way, the deformation
dependence of the tube parameter is then a direct result of
the modeling. Figure 3 summarizes the results: the solid
lines correspond to the best fit of the Des Cloizeaux model
for both directions. The respective tube parameters are

dk ¼ ð44:7� 0:6Þ �A and d? ¼ ð37:4� 0:5Þ �A. These

directly measured values of d� agree within 1 Å with the

expected values when one compares them to dk;? ¼
d0

ffiffiffiffiffiffiffiffiffi
�k;?

p
, which are 43.3 and 36 Å. On the contrary, model

calculations with an affine deformation law dk;? ¼ d0�k;?
are shown as dashed lines and clearly over- or underesti-
mate the (q, t) dependence of the dynamic scattering
function. The affine tube parameters would be 48 and
33 Å, respectively. This illustrates nicely the sensitivity

of the quasielastic NSE method to �1 �A. �k and �? are

related to each other by the incompressibility assumption.
Inversely, the experimental microscopic strain on the tube

level obtained from dk=d? ¼ �3=4 and from the constant

volume hypothesis is consistent with a microscopic chain
deformation on the chain level � ¼ ð1:25� 0:03Þ. Within
experimental error this is identical to the macroscopic
sample deformation � ¼ 1:3, as can be expected for the
underlying cross-link density of �20 kn per chain.

The measured effective localization range is a delicate
average over both cross-link fluctuations and segmental
exploration of the mean field entanglement tube. The first
NSE experiment on a polymeric network under strain,
providing direct access to the tube diameter in terms of
the single chain dynamic structure factor, allowed us to
unequivocally identify the coupling of chain fluctuations to
the strain. This coupling follows the theoretically predicted
square root dependence of the Heinrich-Straube and
Panyukov-Rubinstein models. Based on the high sensitiv-
ity of NSE data on the tube diameter, a nondeformed or

affinely deformed tube in a cross-linked polymer under
strain can be ruled out. This dependence is essential in a
constitutive material law which presently is rated as being
of critical importance in engineering applications and in
the continuum mechanics of rubber materials [8].
The authors thank T. Zinn for constructive discussions.
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