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It was recently shown theoretically that the time-dependent heat conduction equation is form invariant

under curvilinear coordinate transformations. Thus, in analogy to transformation optics, fictitious trans-

formed space can be mapped onto (meta)materials with spatially inhomogeneous and anisotropic heat-

conductivity tensors in the laboratory space. On this basis, we design, fabricate, and characterize a

microstructured thermal cloak that molds the flow of heat around an object in a metal plate. This allows

for transient protection of the object from heating while maintaining the same downstream heat flow as

without object and cloak.
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Transformation optics is a design tool that enables steer-
ing the flow of electromagnetic waves [1–3], liquid waves
[4,5], elastodynamic waves [6–10], or quantum mechanical
matter waves [11,12] in an unprecedented manner. In es-
sence, for each of these examples, curved space is mapped
onto a (meta)material distribution [1,6,13]. For thismapping
to be possible, the underlying equations need to be form
invariant under curvilinear coordinate transformations.

Can this basic idea also be translated to other problems
such as electrical conduction, heat conduction, or particle
diffusion? The answer may not appear obvious because the
time-dependent parabolic differential equations underlying
all of these problems are distinctly different from the hyper-
bolic differential equations that govern wave phenomena.
For example, basic phenomena such as reflection, scatter-
ing, shadows, polarization, or interference are crucial
aspects in many wave systems, but are completely absent
in scalar parabolic differential equations. However, confor-
mal maps have already been used for more than a century
in two-dimensional stationary potential-flow problems in
hydromechanics to transform boundaries (not materials,
though) [14]. The case of time-independent electric con-
duction was studied theoretically in 1984 by Kohn and
Vogelius (following an observation by Tartar) [15] and in
2003 by Greenleaf and co-workers [16]. The authors con-
cluded that the two-dimensional tomography problem is not
unique. This means that one cannot distinguish between,
e.g., (i) a homogeneous conductive plate and (ii) a plate
with a hole and a specially tailored conductivity distribution
around it by measuring the electric resistance between
any number of pairs of points outside the central region.
Today, this nonuniqueness is commonly referred to as
cloaking. Cloaking represents a benchmark example for
any transformation approach. Only quite recently, experi-
ments have been published for steady-state electric cloak-
ing [17]. Experiments have also been published [18] within
the time-independent limit of the corresponding (elliptic)

continuity equation for the heat current density (comprising
a heat shield, but no cloak); also see previous theoretical
work [19]. However, the more general thermodynamic
problem has only been treated theoretically so far [20].
In the dynamic case, the spatial profile of the effective
specific heat enters explicitly, whereas it is strictly irrele-
vant in the static case. Interestingly, the time-dependent
heat-conduction equation is mathematically equivalent to
the time-dependent particle-diffusion equation.
In this Letter, we experimentally realize a thermody-

namic cloak for what we believe to be the first time.
Movies of the transient temperature profiles in a micro-
structured copper plate taken with an infrared camera are
in good agreement with theory. Cloaking is conceptually
distinct from mere isolation. In optics (thermodynamics),
an object can easily be isolated from its surrounding by
wrapping a metal (isolator) around it. However, the flow of
light (heat) will be influenced by the presence of the
isolation. A true cloak not only isolates but also makes
the isolation invisible.
The basic idea of transformation thermodynamics and

transformation conduction is illustrated in Fig. 1. The res-
istors connecting adjacent Cartesian grid points in Fig. 1(a)
can either be Ohmic or thermal. For metals, according to
the Wiedemann-Franz law, the two types of resistors are
simply proportional to each other at a given temperature.
Upon performing the coordinate transformation given in
Ref. [1] in Fig. 1(b), the grid lines become distorted and
an empty region is opened in the middle. However, this
distortion does not influence the flow of the electrical or
the heat current outside the structure, i.e., for r > R2, at all,
provided that adjacent grid points are still connected by
identical resistors (and assuming as usual that the connect-
ing wires have vanishing resistance). Thus, the circular
hole in the middle can be cloaked. To realize such a
fictitious resistor distribution by an actual material distri-
bution, it is interesting to note that the area density of
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resistors in Fig. 1(b) is neither homogeneous nor isotropic.
Close to the inner edge of the cloak at radius r ¼ R1 in
Fig. 1(b), the density of parallel resistors providing current
flow in the azimuthal direction is high; hence, the electric
or the thermal azimuthal conductivity is high. In contrast,
only a few parallel but more serial resistors in this region
provide conduction in the radial direction. Hence, the
radial conductivity is lower and even vanishes towards
the inner radius r ¼ R1. Mathematically [20], Guenneau
and co-workers derived the following approximate form
for the azimuthal component

�� ¼ �0

�
R2

R2 � R1

�
2 � �0 (1)

and the radial component

�r ¼ �0
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�
2
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�
2 � �0 (2)

of the heat conductivity tensor �
$

in the radius interval
R1 � r � R2. Here, �0 is the isotropic heat conductivity
of the surrounding of the cloak. Furthermore, they found
[20] that the product of the effective mass density � and the
effective specific heat c is approximately spatially con-
stant, i.e., �c ¼ const.

These material distributions still need to be mapped onto
a practical metamaterial microstructure exhibiting such

predescribed anisotropic heat conduction. Inspired by our
previous experiments on mechanics [10], we choose 10
equally thick rings with alternating large and small effec-
tive heat conductivities with a contrast that gradually
decreases from the inner radius R1 to the outer radius R2.
The heat conductivities �i of the rings (i ¼ 1–10 from the
inside to the outside of the cloak) are determined using
formulas (24) given in Ref. [20] to obtain the best match
to Eqs. (1) and (2) in the region with R1 � r � R2. In units
of W=ðKmÞ, this leads to �1 ¼ 0:15, �2 ¼ 394:0, �3 ¼
2:91, �4 ¼ 390:0, �5 ¼ 11:26, �6 ¼ 382:7, �7 ¼ 19:02,
�8 ¼ 375:0, �9 ¼ 26:38, and �10 ¼ 367:6. Intuitively, we
exploit the fact that heat conduction is high along the
direction of a ring with high heat conductivity, i.e., in the
azimuthal direction, whereas heat conduction is lower in
the perpendicular radial direction. The effective anisotropy
depends on the contrast within a pair of rings. To act as an
effective material, the spacing between the rings needs to
be small compared to the typical scale of temperature
gradients, i.e., small compared to the thermal diffusion
length.
To obtain these different heat conductivities, we design a

composite structure made by drilling holes into a copper
plate and filling them with polydimethylsiloxane
(PDMS). The corresponding (room-temperature) bulk
heat conductivities are �Cu¼394W=ðKmÞ and �PDMS¼
0:15W=ðKmÞ. The latter is more than 3 orders of magni-
tude smaller than the former. The metal area fraction fi in
ring number i is obtained from the effective-medium for-
mula �i¼fi�Cuþð1�fiÞ�PDMS. The product �c, which
ought to be constant, cannot be adjusted independently in
our approach. The bulk values for copper and PDMS
are �c ¼ 3:4 MJ=ðKm3Þ and �c ¼ 1:4 MJ=ðKm3Þ. We
find, however, that the local effective specific heat
merely varies by about 30% in the radius interval
½R1; R2� for our parameters. To compensate for this ap-
proximation, based on a numerical optimization, we
choose the effective heat conductivity of the surrounding,
�0 ¼ 85 W=ðKmÞ.
The absolute size of all mentioned features is not rele-

vant for the behavior of the thermodynamic cloak. If we
replace ~r ! s~r and t ! s2t with a dimensionless factor s,
the heat-conduction equation remains unchanged. This
means that, for example, reducing the size of all lateral
features by a factor of 10 leads to a thermal time constant,
which is smaller by a factor of 100—of course provided
all material properties remain unchanged. We choose
R1 ¼ 2:5 cm and R2 ¼ 5 cm, leading to a ring thickness
of 2.5 mm. The thickness of the plate is not important for
the heat-conduction problem of interest, but the thickness
does influence the strengths of artifacts. For large plate
thicknesses, the plate’s volume-to-surface ratio is large
and, hence, heat conduction or convection to air is small.
However, at some point the overall heat capacity of the
plate is so large that it becomes difficult to define

FIG. 1 (color online). (a) Square lattice of electrical or thermal
resistors. (b) Illustration of the curvilinear coordinate transfor-
mation underlying the cloak to be shown in Fig. 2. The cloak
region is shaded in gray with the inner and outer radii R1 and R2

marked. Note that the effective local conductivity varies in both
the azimuthal and the radial directions. For an observer measur-
ing heat or electrical flux outside the shaded region, configura-
tions (a) and (b) are indistinguishable. This is the essential idea
of thermal cloaking.
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temperature ‘‘baths,’’ which ought to have heat capacities
much higher than that of the plate. We find that a plate
thickness of 2 mm provides a good trade-off.

In the fabrication of the structure, we start with a bulk
copper plate and machine the pattern shown in Fig. 2(a)
into it. For some of the rings, hexagonal arrays of holes
(with 0.5 mm diameter) are drilled. For other rings, the
very low metal filling fractions inhibit doing that. In
these rings, we rather realize the low metal filling fraction
by azimuthally evenly distributed thin radial bars. This
step makes heat conduction in these individual rings

anisotropic. However, our experiments show that this ap-
proximation has little if any detrimental effect on the
performance of the system. To compensate for all approx-
imations made, we adjust the metal filling fraction in
the surrounding. On the basis of an experimental optimi-
zation, we choose an hexagonal lattice of holes with
lattice constant 1.76 mm and diameter 1.5 mm, leading
to f0 ¼ 34:2%. Thereafter, the holes are filled with PDMS,
which is polymerized afterwards. Furthermore, we have
thermally isolated both surfaces of the composite plate
by an approximately 100 �m thin layer of PDMS. As a
result, heat conduction or convection by air is significantly
reduced.
To measure the transient temperature profiles via

Planck thermal emission using a conventional infrared
heat camera (FLIR A320), it is important to achieve nearly
100% absorbance ¼ emissivity according to Kirchhoff’s
law. Fortuitously, in sharp contrast to the highly reflective
copper itself, the 100 �m thin PDMS layer on the top of
the plate is nearly ‘‘black’’ for the wavelengths seen by
the thermal heat camera. Thus, we need no additional
coating of the surface. The absolute temperatures in the
temperature profiles shown below are derived from the
camera data assuming 99% emissivity (the standard
value). A photograph of one of the fabricated structures
is depicted in Fig. 2(b). Local heating on the left side of
the plate is achieved by a tank filled with hot water [see
Fig. 2(c)]. The heat capacitance of the filled tank is about
2 orders of magnitude higher than that of the composite
plate, qualifying it as a temperature bath in the thermo-
dynamic sense. The right side of the plate is immersed
in an identical tank filled with room-temperature water.
The remaining two sides of the plate are left open (i.e.,
isolated). For waves, such termination would not be
possible because waves are generally reflected at an
open edge.
Figure 3 shows results of our experiments for the com-

plete cloak (left column) and for a simplified isolating
structure (right column) at various times t (different
rows) after exposing the plate to the heat baths at t¼0s.
Prior to that, the plate was kept under room temperature
conditions for a sufficiently long time such that it exhibited
a spatially constant temperature at t ¼ 0 s. The tempera-
ture in the plane of the plate is shown on a false-color scale.
The cloak obviously successfully fulfills its task in that the
central region is colder than its surrounding. Furthermore,
the white isotemperature lines on the downstream side of
the cloak in Fig. 3 are nearly vertical, indicating a tempe-
rature distribution as if nothing was there. However, one
must be cautious because part of the desired and achieved
effect can also be obtained by a simple thermal isolation
around the circular central region. Thus, we have fabri-
cated a corresponding reference sample with a solid copper
region and the first PDMS ring around it (parameters like
those for the complete cloak). The surrounding is a

FIG. 2 (color online). (a) Blueprint of the designed thermal
cloak (only one half is shown due to symmetry). The black
regions are bulk copper, and the white regions are PDMS with
heat conductivities of 394 and 0:15 W=ðKmÞ, respectively. As
illustrated in Fig. 1(b), the radial and azimuthal components of
the effective local heat conductivity follow a recipe predescribed
by the coordinate transformation. (b) Photograph of the fabri-
cated thermal cloak and (c) scheme of the experiment, the results
of which are shown in Fig. 3.
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homogeneous perforation just like that for the cloak; i.e.,
this reference structure has no further rings. The result
depicted in the right column of Fig. 3 also shows a central
region that is cooler than its surrounding. This finding is
very much different from that of light waves or mechani-
cal waves due to the fundamental difference between
hyperbolic and parabolic differential equations empha-
sized in the introduction. The optical counterpart of the
weakly heat conducting PDMS ring would be an opaque
metal film. In mechanics, the analogue would be a rigid
wall. As a result, one gets scattering, shadowing, and

wave-front distortions. These effects have, e.g., been
observed in Ref. [10] for a comparable two-dimensional
scenery. In contrast, in Fig. 3, all of these effects are
absent. One merely finds distortions of the isotemperature
curves, which may be seen as the counterpart of wave
fronts. The isotemperature curves in the homogeneously
perforated region near the center of the reference struc-
ture are curved towards the center. Here, the heat flux is
simply perpendicular to the isocurves. In sharp contrast,
the isotemperature curves for the complete cloak in Fig. 3
exhibit the opposite curvature, namely, away from the
cloak, both on its left and on its immediate right. The
local heat flux is still normal to the isotemperature curves.
Averaged over the fine wiggles due to the metamaterial
features, however, the heat flux results from the product

FIG. 3 (color online). Measured temperature distributions at
different times t as indicated. At t¼0s, we start from a homo-
geneous room-temperature profile. Results for the complete
thermal cloak shown in Fig. 2(b) are shown in the left column,
and results for a simplified reference structure with only a
thermally isolating ring around the central copper region are
depicted in the right column. The white curves are isotemper-
ature lines (equidistant in steps of 3 �C) corresponding to the
temperature profiles depicted on a false-color scale.

FIG. 4 (color online). Calculated temperature distributions
shown as the experimental results in Fig. 3. For the cloak in
the left column, the ring structure is indicated for clarity.
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of the local anisotropic heat conductivity tensor and the
local temperature gradient.

Generally, our experiments in Fig. 3 agree well with the
corresponding numerical calculations (COMSOL) shown in
Fig. 4. The heat baths are mimicked by fixed temperatures.
Furthermore, the calculations assume isotropic homogene-
ous rings with the prescribed heat conductivities given
above and do not account for heat conduction to the sur-
rounding air. The latter aspect likely explains the remaining
discrepancies. We refrain from showing the modeling
accounting for this aspect because it is not part of the cloak
design. Applications would likely use smaller structures
than our model anyway. Hence, as discussed above, the
time scales become shorter and heat transport via air
(especially via convection) would play an even smaller
role. Clearly, by design, the cloak recovers the overall
downstream heat flow of the homogeneously perforated
plate under transient as well as under static conditions
(see the Supplemental Material [21]). However, in the
static or long-time limit, due to the finite heat conductivity
of the innermost isolating ring, the to-be-protected
inner region does eventually heat up (Supplemental
Material [21]). Hence, thermal protection works only
transiently.

In conclusion, using the theoretical concepts of trans-
formation thermodynamics, we have realized a cloak that
molds the dynamic flow of heat around an object as if no
object was there. Such thermal cloaks might find, e.g.,
applications in temporarily protecting sensitive regions in
an electrical circuit or chip from excessive heating. More
importantly, our experiments also demonstrate that the
ideas of transformation optics go well beyond systems
exhibiting waves and also work for transient heat
conduction.
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