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We explore the nature of the Bose condensation transition in driven open quantum systems, such as

exciton-polariton condensates. Using a functional renormalization group approach formulated in the

Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an

effective thermalization of the low frequency dynamics. We identify a critical exponent special to the

driven system, showing that it defines a new dynamical universality class. Hence critical points in driven

systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how

the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-

polariton condensates.
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Recent years have seen major advances in the explora-
tion of many-body systems in which matter is strongly
coupled to light [1]. Such systems include for example
polariton condensates [2], superconducting circuits
coupled to microwave resonators [3,4], cavity quantum
electrodynamics [5], as well as ultracold atoms coupled
to high finesse optical cavities [6]. As in traditional quan-
tum optics settings, these experiments are subject to losses,
which may be compensated by continuous drive, yet they
retain the many-body character of condensed matter. This
combination of ingredients from atomic physics and quan-
tum optics in a many-body context defines a qualitatively
new class of quantum matter far from thermal equilibrium.
An intriguing question from the theoretical perspective is
what new universal behavior can emerge under such
conditions.

A case in point is exciton-polariton condensates.
Polaritons are short lived optical excitations in semicon-
ductor quantum wells. Continuous pumping is required to
maintain their population in steady state. But in spite of the
nonequilibrium conditions, experiments have demon-
strated Bose condensation [2] and, more recently, have
even observed the establishment of a critical phase with
power-law correlations in a two dimensional system below
a presumed Kosterlitz-Thouless phase transition [7]. At a
fundamental level, however, there is no understanding of
the condensation transition in the presence of loss and
external drive, and more generally of continuous phase
transitions under such conditions.

In this Letter we develop a theory of dynamical critical
phenomena in driven-dissipative systems in three dimen-
sions. Motivated by the experiments described above we
focus on the case of Bose condensation with the following
key results. (i) Low-frequency thermalization: the micro-
scopic dynamics of a driven system is incompatible with

an equilibriumlike Gibbs distribution at steady state.
Nevertheless a scale independent effective temperature
emerges at low frequencies in the universal regime near
the critical point, and all correlations in this regime obey a
classical fluctuation-dissipation relation (FDR). Such a
phenomenon of low frequency effective equilibrium has
been identified previously in different contexts [8–13].
(ii) Universal low-frequency decoherence: in spite of the
effective thermalization, the critical dynamics is signifi-
cantly affected by the nonequilibrium conditions set by the
microscopic theory. Specifically we show that all coherent
dynamics, as measured by standard response functions,
fades out at long wavelengths as a power law with a new
universal critical exponent. The decoherence exponent
cannot be mimicked by any equilibrium model and places
the critical dynamics of a driven system in a new dynami-
cal universality class beyond the Halperin-Hohenberg clas-
sification of equilibrium dynamical critical behavior [14].
Open system dynamics.—A microscopic description of

driven open systems typically starts from a Markovian
quantum master equation or an equivalent Keldysh action
(see the Supplemental Material [15]). However, the novel
aspects in the critical dynamics of driven dissipative sys-
tems discussed below can be most simply illustrated by
considering an effective mesoscopic description of the
order parameter dynamics using a stochastic Gross-
Pitaevskii equation [16]

i@tc ¼ ½�ðA� iDÞr2 ��þ i�þ ð�� i�Þjc j2�c þ �:

(1)

As we show below, this equation can be rigorously derived
from a fully quantum microscopic description of the con-
densate when including only the relevant terms near the
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critical point. The different terms in Eq. (1) have a clear
physical origin. � ¼ ð�p � �lÞ=2 is the effective gain,

which combines the incoherent pump field minus the local
single-particle loss terms. �, � > 0 are, respectively,
two-body loss and interaction parameters. The diffusion
term D is not contained in the original microscopic model,
and is not crucial to describe most nonuniversal aspects of,
e.g., exciton-polariton condensates [17] (but see Ref. [18]).
In a systematic treatment of long-wavelength universal
critical behavior, however, such a term is generated upon
integrating out high frequency modes during the renormal-
ization group (RG) flow, irrespective of its microscopic
value. We therefore include it at the mesoscopic level with
a phenomenological coefficient. Finally � is a Gaussian
white noise with correlations h��ðt;xÞ�ðt0;x0Þi ¼ ��ðt�
t0Þ�ðx� x0Þ where � ¼ �p þ �l. Such noise is necessarily

induced by the losses and sudden appearances of particles
due to pumping.

The stochastic Gross-Pitaevskii equation describes a
mean field transition from a stationary condensate solution
with density jc j2 ¼ �=� for �> 0 to the vacuum state
when � crosses zero. Dynamical stability [19] determines
the chemical potential as � ¼ �jc j2. Similar to a tem-
perature, the noise term in Eq. (1) can drive a transition at
finite particle density, thereby inducing critical
fluctuations.

As the equation of motion is cast in Langevin form, one
might suspect that it can be categorized into one of the
well-known models of dynamical critical phenomena clas-
sified by Hohenberg and Halperin [14]. However, this is
not true in general. Crucially coherent [real parts of the
couplings in Eq. (1)] and dissipative (imaginary parts)
dynamics have different physical origins in driven-
dissipative systems. In particular, the dissipative dynamics
is determined by the intensity of the pump and loss terms,
independently of the intrinsic Hamiltonian dynamics of
the system. Equilibrium models [14], on the other hand,
are constrained to have a specific relation between the
reversible and dissipative terms to ensure a thermal
Gibbs ensemble in steady state [20,21] (see below). The
unconstrained dynamics in driven systems is the key fea-
ture that can lead to novel dynamic critical behavior.

Microscopic model.—Having illustrated the nature of
the problem with the effective classical Eq. (1) we turn
to a fully quantum description within the Keldysh frame-
work. Our starting point is a nonunitary quantum evolution
described by a many-body master equation in Lindblad
form, or equivalently by the following dissipative Keldysh
action (see the Supplemental Material [15] for details of
the correspondence):

S ¼
Z
t;x

�
ð��

c; �
�
qÞ

0 PA

PR PK

 !
�c

�q

 !
þ i4���

c�c�
�
q�q

� ½ð�þ i�Þð��2
c �c�q þ��2

q �c�qÞ þ c:c:�
�
: (2)

Here �c, �q are the ‘‘classical’’ and ‘‘quantum’’ fields,

defined by the symmetric and antisymmetric combinations
of the fields on the forward and backward parts of the
Keldysh contour [22,23]. The microscopic inverse
Green’s functions are given by PR ¼ i@t þ Ar2 þ��
i�, PA ¼ PRy, PK ¼ i�.
The importance of the various terms in the microscopic

action [Eq. (2)] in the vicinity of the critical point can be
inferred from canonical power counting, which serves as a
valuable guideline for the explicit evaluation of the prob-
lem. Vanishing of the mass scale � defines a Gaussian fixed
point with dynamical critical exponent z ¼ 2 (!� kz,
where k is a momentum scale). Canonical power counting
determines the scaling dimensions of the fields and inter-
action constants with respect to this fixed point: At criti-
cality, the spectral components of the Gaussian action scale

as PR=A � k2, while the Keldysh component generically
takes a constant value, i.e., PK � k0. Hence, to maintain
scale invariance of the quadratic action, the scaling dimen-
sions of the fields must be ½�c� ¼ d�2

2 and ½�q� ¼ dþ2
2 .

From this result we read off the canonical scaling dimen-
sions of the interaction constants. This analysis shows that
in the case of interest d ¼ 3, local vertices containing more
than two quantum fields or more than five classical fields
are irrelevant. For the critical problem, the last terms in
both lines of Eq. (2) can thus be skipped, massively sim-
plifying the complexity of the problem. The only marginal
term with two quantum fields is the Keldysh component
of the single-particle inverse Green’s function, i.e., the
noise vertex. In this sense, the critical theory is equivalent
to a stochastic classical problem [24,25], as previously
observed in Refs. [8,26]. But as noted above it cannot be
a priori categorized in one of the dynamical universality
classes [14] subject to an intrinsic equilibrium constraint.
Functional RG.—In order to focus quantitatively on the

critical behavior we use a functional RG approach formu-
lated originally by Wetterich [27] and adapted to the
Keldysh real time framework in Refs. [28,29] (see the
Supplemental Material [15] for details). At the formal level
this technique provides an exact functional flow equation
for an effective action functional ��½�c;�q�, which

includes information on increasingly long-wavelength
fluctuations (at the microscopic cutoff scale ��0

� S). In
practice one works with an ansatz for the effective action
and thereby projects the functional flow onto scaling equa-
tions for a finite set of coupling constants. For the descrip-
tion of general equilibrium [30–35] and Ising dynamical
[36] critical behavior the functional RG gave results that
are competitive with high-order epsilon expansion and
with Monte Carlo simulations already in rather simple
approximation schemes.
Our ansatz for the effective action is motivated by the

power counting arguments introduced above. We include
in �� all couplings that are relevant or marginal in this
scheme,
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�� ¼
Z
t;x
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ð��

c; �
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0 iZ@t þ �Kr2

iZ�@t þ �K�r2 i ��

 !

� �c

�q

 !
�
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@��
c

��
q

��
: (3)

The dynamical couplings Z and �K have to be taken
complex valued in order to be consistent with power count-
ing, even if the respective imaginary parts vanish (or are
very small) at the microscopic scale: Successive momen-
tum mode elimination implemented by the RG flow gen-
erates these terms due to the simultaneous presence of local
coherent and dissipative couplings in the microscopic
model. The fact that the spectral components of the effec-
tive action depend only linearly on �q allowed us to

introduce an effective potential �U determined by the
complex static couplings. �Uð	cÞ ¼ 1=2 �uð	c � 	0Þ2 þ
1=6 �u0ð	c � 	0Þ3 is a function of the Uð1Þ invariant combi-
nation of classical fields 	c ¼ ��

c�c alone. It has a
Mexican hat structure ensuring dynamical stability. With
this choice we approach the transition from the ordered
side, taking the limit of the stationary state condensate
	0 ¼ ��

c�cjss ¼ ��
0�0 ! 0.

All the parameters appearing in Eq. (3) including the
stationary condensate density 	0 are functions of the run-
ning cutoff �. Hence, the functional flow of �� is reduced
by means of the approximate ansatz to the flow of a finite
number of couplings g ¼ ðZ; �K; 	0; �u; �u

0; ��ÞT determined
by the 
 functions �@�g ¼ 
gðgÞ (see the Supplemental

Material [15]). The critical system is described by a scaling
solution to these flow equations. It is obtained as a fixed
point of the flow of dimensionless renormalized couplings,
which we derive in the following. First we rescale the
couplings with Z,

K¼ �K=Z; u¼ �u=Z; u0 ¼ �u0=Z; �¼ ��=jZj2: (4)

Coherent and dissipative processes are encoded, respec-
tively, in the real and imaginary parts of the renormalized
coefficients K ¼ Aþ iD, u ¼ �þ i�, and u0 ¼ �0 þ i�0.

We define the first three dimensionless scaling variables
to be the ratios of coherent to dissipative coefficients: rK ¼
A=D, ru ¼ �=�, and ru0 ¼ �0=�0. Another three dimen-
sionless variables are defined by rescaling the loss coef-
ficients � and �0 and the condensate density 	0,

w ¼ 2�	0

�2D
; ~� ¼ ��

2�D2
; ~�0 ¼ �2�0

4D3
: (5)

The flow equations for the couplings r ¼ ðrK; ru; ru0 ÞT and
s ¼ ðw; ~�; ~�0ÞT form a closed set,

�@�r ¼ 
rðr; sÞ; �@�s ¼ 
sðr; sÞ (6)

(see the Supplemental Material [15] for the explicit form).
As a consequence of the transformations of Eqs. (4) and (5),
these 
 functions acquire a contribution from the running

anomalous dimensions �aðr; sÞ ¼ ��@� lna associated
with a ¼ Z, D, �.
Critical properties.—The universal behavior near the

critical point is controlled by the infrared flow to a
Wilson-Fisher-like fixed point. The values of the coupling
constants at the fixed point, determined by solving

sðr�; s�Þ ¼ 0 and 
rðr�; s�Þ ¼ 0, are given by

r� ¼ ðrK�; ru�; ru0�Þ ¼ 0;

s� ¼ ðw�; ~��; ~�0�Þ � ð0:475; 5:308; 51:383Þ: (7)

The fact that r� ¼ 0 implies that the fixed point action is
purely imaginary (or dissipative), as in model A of
Hohenberg and Halperin [14] [cf. Fig. 1(c)]. We interpret
the fact that the ratios of coherent vs dissipative couplings
are zero at the fixed point as a manifestation of decoher-
ence at low frequencies in an RG framework. The coupling
values s� are identical to those obtained in an equilibrium
classical Oð2Þ model from functional RG calculations at
the same level of truncation [30].
Let us turn to the linearized flow, which determines the

universal behavior in the vicinity of the fixed point. We find
that the two sectors corresponding to s and r decouple in
this regime, giving rise to a block diagonal stability matrix,

@

@ ln�

�r

�s

 !
¼ N 0

0 S

 !
�r

�s

 !
; (8)

where �r � r, �s � s� s�, and N, S are 3� 3 matrices
(see the Supplemental Material [15]).
The anomalous dimensions entering this flow are found

by plugging the fixed point values r�, s� into the expres-
sions for �aðr; sÞ. We obtain the scaling relation between

FIG. 1 (color online). Flow in the complex plane of dimen-
sionless renormalized couplings. (a) The microscopic action
determines the initial values of the flow. Typically, the coherent
propagation will dominate over the diffusion A � D, while two-
body collisions and two-body loss are on the same order of
magnitude ~� � ~�, with a similar relation for the marginal com-
plex coupling ~u0. The initial flow is nonuniversal. (b) At criti-
cality, the infrared (IR) flow approaches a universal linear
domain encoding the critical exponents and anomalous dimen-
sions. In particular, this regime is independent of the precise
microscopic initial conditions. (c) The Wilson-Fisher fixed point
describing the interacting critical system is purely imaginary.
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the anomalous dimensions �Z ¼ � ��, valid in the universal

infrared regime. This leads to cancellation of�Z with� �� in

the static sector S (see the Supplemental Material [15]).
The critical properties in this sector, encoded in the eigen-
values of S, become identical to those of the standard Oð2Þ
transition. This includes the correlation length exponent
� � 0:716 and the anomalous dimension � � 0:039 asso-
ciated with the bare kinetic coefficient �K. These values are
in good agreement with more sophisticated approxima-
tions [37].

The equilibriumlike behavior in the S sector can be
seen as a result of an emergent symmetry. Locking of
the noise to the dynamical term implied by �Z ¼ � �� leads

to invariance of the long-wavelength effective action
(times i) under the transformation �cðt;xÞ ! �cð�t;xÞ,
�qðt;xÞ ! �qð�t;xÞ þ 2

�
z@t�cð�t;xÞ, i ! �i with

�� ¼ ð��;�
�
�ÞT , � ¼ ðc; qÞ, and the Pauli matrix z.

It generalizes the symmetry noted in Refs. [38,39] to mod-
els that include also reversible couplings. The presence of
this symmetry implies a classical FDR with a distribution
function F ¼ 2Teff=!, governed by an effective tempera-
ture Teff ¼ ��=ð4jZjÞ. This quantity becomes scale indepen-
dent in the universal critical regime where ��� k�� �� and
Z� k��Z cancel. We interpret this finding as an asymptotic
low-frequency thermalizationmechanism of the driven sys-
tem at criticality. The thermalized regime sets in below the
Ginzburg scale where fluctuations start to dominate, for
which we estimate perturbatively �G ¼ ð��Þ2=ð16�2D3Þ
(see the Supplemental Material [15]). The values entering
here are determined on the mesoscopic scale, and we spec-
ify them for exciton-polariton systems in the Supplemental
Material [15] based on Ref. [18]. Above the scale �G, no
global (scale independent) temperature can be defined in
general. We note that, unlike Hohenberg-Halperin type
models, here the symmetry implied by �Z ¼ � �� is not

imposed at the microscopic level of the theory, but rather
is emergent at the critical point.

The key new element in the driven-dissipative dynamics
is encoded in the decoupled ‘‘drive’’ sector (the 3� 3
matrix N in our case). It describes the flow towards
the emergent purely dissipative model A fixed point [see
Fig. 1(b)] and thus reflects a mechanism of low frequency
decoherence. This sector has no counterpart in the standard
framework of dynamical critical phenomena and is special
to driven-dissipative systems. In the deep infrared regime,
only the lowest eigenvalue of this matrix governs the flow
of the ratios. This means that only one new critical expo-
nent �r � �0:101 is encoded in this sector. Just as the
dynamical critical exponent z is independent of the static
ones, the block diagonal structure of the stability matrix
ensures that the drive exponent is independent of the
exponents of the other sectors.

The fact that the inverse Green’s function in Eq. (3) is
specified by three real parameters, Re �K, Im �K, and jZj [the
phase of Z can be absorbed by a Uð1Þ transformation]

allows for only three independent anomalous dimensions:
�D, �Z, and the new exponent �r. Hence the extension of
critical dynamics described here is maximal; i.e., no fur-
ther independent exponent will be found. Moreover this
extension of the purely relaxational (model A) dynamics
leads to a different universality than an extension that adds
reversible couplings compatible with relaxation toward a
Gibbs ensemble. The latter is obtained by adding real
couplings to the imaginary ones with the same ratio of
real to imaginary parts for all couplings [40–43]; in this
case, the above symmetry is present, while absent in the
general nonequilibrium case. The compatible extension
adds only an independent 1� 1 sector N to the purely
relaxational problem, for which we find �R ¼ �0:143 �
�r. This proves that the independence of dissipative and
coherent dynamics defines indeed a new nonequilibrium
universality class with no equilibrium counterpart. It is
rooted in different symmetry properties of the equilibrium
vs nonequilibrium situation.
Experimental detection.—The novel anomalous dimen-

sion identified here leaves a clear fingerprint in single-
particle observables accessible with current experimental
technologies on different platforms. For ultracold atomic
systems this can be achieved via rf spectroscopy [44] close
to the driven-dissipative Bose-Einstein condensation tran-
sition. In exciton-polariton condensates, the dispersion
relation can be obtained from angle resolved rf spectros-
copy as demonstrated in Ref. [45]. Using the RG scaling
behavior of the diffusion and propagation coefficientsD�
D0�

��D , A ¼ DrK � A0�
��r��D , we obtain the anoma-

lous scaling of the frequency and momentum resolved,
renormalized retarded Green’s function GRð!;qÞ ¼ ð!�
A0jqj2��r��D þ iD0jqj2��DÞ�1, with A0 and D0 nonuni-
versal constants. Peak position and width are implied by
the complex dispersion ! � A0jqj2:22 � iD0jqj2:12. The
energy resolution necessary to probe the critical behavior
is again set by the Ginzburg scale �G (see above).
Conclusions.—We have developed a Keldysh field theo-

retical approach to characterize the critical behavior of
driven-dissipative three dimensional Bose systems at the
condensation transition. The main result presents a hier-
archical extension of classical critical phenomena. First, all
static aspects are identical to the classical Oð2Þ critical
point. In the next shell of the hierarchy a subclass of the
dynamical phenomena is identical to the purely dissipative
model A dynamics of the equilibrium critical point. Finally
we identify manifestly nonequilibrium features of the
critical dynamics, encoded in a new independent critical
exponent that betrays the driven nature of the system.
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