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We explain the rotating polygon instability on a swirling fluid surface [G.H. Vatistas, J. Fluid Mech.

217, 241 (1990) and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)] in terms of resonant interactions

between gravity waves on the outer part of the surface and centrifugal waves on the inner part. Our

model is based on potential flow theory, linearized around a potential vortex flow with a free surface for

which we show that unstable resonant states appear. Limiting our attention to the lowest order mode of

each type of wave and their interaction, we obtain an analytically soluble model, which, together

with estimates of the circulation based on angular momentum balance, reproduces the main features of

the experimental phase diagram. The generality of our arguments implies that the instability should

not be limited to flows with a rotating bottom (implying singular behavior near the corners), and

indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a

hot container.
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Experiments with a rotating free surface flow in a cylin-
drical container driven by a rotating bottom plate show the
occurrence of spectacular polygonal patterns that rotate
with essentially unchanged form [1,2]. Recent work [3]
suggests that a linear instability of circular-symmetric
‘‘parent’’ states leads to asymmetric ‘‘children’’ states of
polygon shape. Our starting point is thus the symmetric
‘‘parent’’ state sketched in Fig. 1(a). It was shown in
Refs. [3,4] that, due to the secondary flows created by
boundaries, the surface flow should be close to that of a
potential vortex. It is also known that viscosity plays a
minor role [2] and that indeed the flow is quite turbulent
[5]. The bulk flow is thus not known in detail, and, due to
the singularity near the cornerC, where the rotating bottom
plate meets the stationary sides, it must be quite complex.
In this work, we shall neglect these complications and
simply assume that the entire flow is that of a potential
vortex with a dry core and that the perturbations around
this flow remain potential. The success of this rough model
implies that the singularity near C in Fig. 1 is not essential,
and, indeed, we shall see that new and surprisingly simple
experiments with stirred liquid nitrogen in a hot kitchen pot
confirm that the polygon formation is a general feature of
rapid swirling flows. Perturbations around a potential vor-
tex flow were considered earlier in Ref. [6], but, since the
treatment did not include the vertical dimension, no insta-
bility was found.

We describe the system using cylindrical (r,�,z) coor-
dinates. The unperturbed flow is that of a potential vortex
with circulation �; i.e., the local flow velocity is in the
azimuthal direction and has magnitude UðrÞ ¼ ð�=2�rÞ.
We denote the inner radius of the fluid volume by � and the
outer height by � [cf. Fig. 1(a)]. The shape of the fluid body
in the unperturbed equilibrium state is determined by the

balance between the gravitational acceleration g and the
centrifugal acceleration UðrÞ2=r. On the free surface
z ¼ zðrÞ, the pressure is constant, and thus gð@z=@rÞ ¼
UðrÞ2=r, which yields

zðrÞ ¼ 1
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For comparison with the experiment, we shall keep the
3D fluid volume fixed. CallingH the height of liquid at rest
(cf. Fig. 1), �R2H ¼ R

R
� dr2�rzðrÞ is the fluid volume,

where zðrÞ is given by (1). Thus, we can express � ¼ zðRÞ
and � in terms of H, �, and R:

� ¼ H
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FIG. 1 (color online). Sketch of the setup and explanation of
the 2D model. (a) Cross-sectional view, featuring the bottom
plate and side walls, the actual volume occupied by the fluid
(grey area) and a cut (ACB) through the domain considered in
the simplified model. Initially, the cylindrical container of radius
R is filled with water to height H. (b) 3D sketch of the 2D model
displaying waves at its upper and inner surfaces.
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The free surface can support wave motions, which can
be analyzed by adding small potential perturbations v0 ¼
r� to the axisymmetric base flow. The potential � sat-
isfies the Laplace equation
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and the kinematic and dynamic boundary conditions at the
free surface can be combined to the single one:�

@
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where n is the outward normal to the surface, and where

ge ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ½�2=ð4�2r3Þ�2p

is the effective accelera-
tion normal to the interface, combining gravity and cen-
trifugal effects.

The linear problem (4) and (5) for the three-dimensional
domain displayed in Fig. 1 has to be solved numerically.
The solution is discussed below, but, prior to this, we
investigate a simplified situation in which all the motion
is assumed to take place in a two-dimensional domain
lying along the boundaries, consisting of a planar annulus
on the bottom [line AC in Fig. 1(a)] and a cylindrical
surface along the side wall [line BC in Fig. 1(a)].
Physically, this domain can be thought of as a narrow
channel of width �, as if the flow was constricted by the
presence of solid walls located at z ¼ � and r ¼ R� �, as
indicated by the dashed lines in Fig. 1(a). The eigenfunc-
tions to (4) in the two parts of this domain have, respec-
tively, the form

�c ¼
�
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�
r

R

�
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�
r

R

��m
�
eiðm��!tÞ; (6)

�g ¼ ðK3e
mz=R þ K4e

�mz=RÞeiðm��!tÞ; (7)

where Ki are unknown constants, m is the azimuthal wave
number, and ! ¼ !r þ i!i, !r being the oscillation fre-
quency and!i the growth rate. In the corner connecting the
two subdomains, we assume continuity of pressure and
conservation of flux:

�cjC� ¼ �gjCþ; @�c

@r

��������C�
¼ @�g

@z

��������Cþ
; (8)

where C� is the limit when approaching C from
A (r ! R), and Cþ is approaching C from B (z ! 0).

The free surface condition (5) applied at A and B then
leads to

ð!�m��Þ2�cð�Þ ¼ �gc
@�c

@r

��������r¼�
; (9)

ð!�m�RÞ2�gð�Þ ¼ g
@�g

@z

��������z¼�
; (10)

where �� ¼ Uð�Þ=� and �R ¼ UðRÞ=R are the rotation

rates at A and B, and gc � �2=ð4�2�3Þ is the centrifugal
acceleration at the inner surface. Together with the corner
conditions (8), which simply implyK1 ¼ K3 andK2 ¼ K4,
they lead to a dispersion relation in the form

Dcð!ÞDgð!Þ ¼ m2ggc
�R

ðF2 � 1Þ; (11)

where
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Dcð!Þ ¼ ð!�m��Þ2 � gcmF=� (13)

Dgð!Þ ¼ ð!�m�RÞ2 � gmF=R: (14)

Since the term (F2 � 1) is a small quantity, especially in
the large-m limit, Eq. (11) can be interpreted as describing
the weak coupling of two kinds of waves. This situation is
analogous to the three-layer model of the Kelvin-
Helmholtz instability studied by Cairns [7]. In the present
case, Dgð!Þ and Dcð!Þ are dispersion relations for two

families of waves: ‘‘gravity waves’’ with frequency!g and

‘‘centrifugalwaves’’with frequency!c, which are obtained
by considering the same set of equations but retaining only
one of the free surface conditions: (10) for gravity waves
and (9) for centrifugal ones [8]. Each of these wave types
comes in two variants, depending on the sign chosen in (13)
and (14), i.e., their direction of propagation compared to the
local mean flow.
The full dispersion relation (11) is quartic in ! and is

most conveniently solved numerically. Results are dis-
played in Fig. 2(a) for the case H=R ¼ 0:276; m ¼ 3.
Away from the resonances, we get four solutions which
are very close to the respective solutions of Dgð!Þ ¼ 0 or

Dcð!Þ ¼ 0, i.e., the two gravity waves (where !g has a

finite limit for � ! 0) and the two centrifugal waves (where
!c diverges as � ! 0). Resonance occurswhen the frequen-
cies of the two kinds of waves coincide, i.e., �=R�0:43 and
�=R�0:78. The first case is magnified in Fig. 2(b), which
shows that, in a narrow range of �, the coupled problem
displays two complex conjugate eigenvalues, one of them
creating instability. The corresponding amplification rate is
plotted in Fig. 2(c). On the other hand, the second case
[magnified in Fig. 2(d)] does not give instability, since the
two lines that appear to intersect in fact repel and the
frequencies remain real throughout the interval.
These results are easy to understand, following the

approach of Cairns [7]. Let us call !g and !c the respec-

tive solutions of Dgð!Þ ¼ 0 or Dcð!Þ ¼ 0 and suppose

that they are close to resonance, i.e., !g ¼ !c þ � with �
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small. We also assume that we can find a solution ! of the
coupled problem which is close to both, i.e., ! ¼ !c þ �
where � is also small. Inserting into (11) and expanding to
lowest order in the small quantities, we find �2 � ���
K ¼ 0, where

K ¼ m2ggc
�R

ðF2 � 1Þ
D0

cð!cÞD0
gð!gÞ : (15)

Thus, � becomes complex if j�j< 2jKj1=2 and K < 0.
From (12), it is clear that F > 1, and thus instability
[Figs. 2(d) and 2(c)] requires that D0

cð!ÞD0
gð!Þ< 0, i.e.,

mUðRÞ=R <!<mUð�Þ=�, showing that the gravitational
waves run forward and the centrifugal waves run backward
with respect to the local mean flow. Since their velocity
must coincide at resonance, the mean flow must be slower
than the wave speed at r ¼ R and quicker than the wave
speed at r ¼ �. In Cairns terminology, the centrifugal wave
has negative energy.

To support this simple model, we have solved the set of
equations (4) and (5) for the full linearized flow numeri-
cally using the finite element software FreeFem++ [9].
Figure 3 shows the eigenvalues (frequencies) with the
same set of parameters as in Fig. 2. The full solution allows
for many more wave types, but as seen in the figure they
still organize into two families, with dispersion relations
like gravity waves and like centrifugal waves, respectively.
A number of unstable and stable resonances are observed.
The resonance leading to the highest growth rate occurs
between the waves with the simplest structure in each
family and is well captured by the simple 2D model.

To compare our simple modeling with the experiments
of Ref. [2], we need to relate the parameters of the fluid
state, say, � and �, to the control parameters of the

experiment, namely, the filling height H and the bottom
plate rotation rate f. This is a somewhat difficult task
because the boundary layers neglected so far will become
important near the plate and the wall. To simplify, we
proceed by thinking of the fluid body as a conduit for
angular momentum: The fluid will tend to settle in a state
where the inflow of angular momentum equals the outflow.
We model the turbulent flow by Prandtl’s mixing length
theory [10], where the shear stress acting on the fluid at the
walls is � � 	j�uj�u and �u is the difference between
the velocities of the solid boundary and of the free stream
flow. The torque acting on the fluid over a boundary area
A is proportional to

R
dAr�. Setting the accelerating

torque from the fast bottom plate equal to the decelerating
torque from the stationary side wall, we obtain the equi-
librium criterion [11]

Z R

�
dr½ðr2=x2Þ � 1�jðr2=x2Þ � 1j ¼ �; (16)

where x � ð2�Þ�1
ffiffiffiffiffiffiffiffiffi
�=f

p
. For given � and � , we look for a

solution for x, which then, via (2) and (3), links the bottom
frequency f to the flow parameters. In Fig. 4(a), we have
superimposed the regions of instability in the H� f plane
for m ¼ 2 to 6 for the two-mode model (11) with the
experimental phase diagram. Considering the simplicity
of the model, the agreement with the experiment is
surprisingly good. For comparison, we show in Fig. 4(b)
the analog result for the global model (4) and (5), which
also agrees rather well, but with the instability regions
shifted slightly downward in frequency. Here, we include
only the mode with the simplest structure for each m,
since the others are much narrower and weaker. The
caveats in both the experimental data and the modeling
by (16) are discussed in the Supplemental Material [11].
Note that we have instabilities of any order m, although

FIG. 3. Oscillation frequencies computed from the full line-
arized flow (4) and (5) for (H=R ¼ 0:276; m ¼ 3) as a function
of �=R, scaled as in Fig. 2. Only the rightmost instability at
�=R slightly above 0.3, the intersection of the shaded lines, is
seen experimentally and corresponds to the one in the two-
dimensional model at �=R � 0:43. The higher resonances are
much narrower and weaker.
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FIG. 2. Eigenvalues computed from the 2D model as function
of �, for H=R ¼ 0:276 and m ¼ 3. (a) Oscillation frequencies
!r. (b),(c) Magnifications around the unstable wave interaction
at �=R � 0:43 displaying oscillation frequency !r and amplifi-
cation rate !i. (d) Magnification of the stable wave interaction at
�=R � 0:78. Thick lines represent solutions of the coupled
model (11); thin lines represent solutions of the uncoupled
model, i.e., roots of (13) and (14). All frequencies have been

scaled with the gravitational time scale
ffiffiffiffiffiffiffiffiffi
R=g

p
.
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the resonances become very narrow for large order. This
seems in disagreement with Ref. [12], where the polygons
are viewed as rotating bound states of point vortices, and
thus, due to theorems of Thomson and Havelock, should
only be stable for m< 7. Our analysis is, however, re-
stricted to small perturbations around the circular state,
and therefore we cannot say whether the final nonlinear
states would have secondary instabilities for large m.
Note also that we cannot rule out the existence of
polygons outside the narrow strips of instability in
Fig. 4, since this could be caused by subcritical bifurca-
tions. Indeed, a considerable hysteresis is observed
experimentally [2,5].

We have seen that a potential vortex flow in a closed
cylindrical container is unstable to perturbations with azi-
muthal wave numbers m � 2, and that the instability can
be interpreted as a resonance between gravity waves

propagating on the upper surface and centrifugal waves
propagating on the inner surface. Such instabilities involv-
ing the interaction of different families of waves are not
uncommon and have been described in various contexts,
ranging from plasma dynamics and geophysical flows to
astrophysics [13]. In our modeling, the occurrence of the
polygon instability is linked to the simple potential vortex
flow and should thus be rather general. This has led us to
speculate if the instability may occur in a similar flow with
different boundary conditions. The setup is simple: Place
an ordinary kitchen pot on a hot stove and fill in a layer of
liquid nitrogen. The temperature of the pot can be kept so
high that the nitrogen undergoes film boiling at the solid
boundary. The resulting gas layer lubricates the boundary
and allows the liquid to flow almost unimpeded. By stirring
rapidly with a spoon, one can induce a flow close to that of
a potential vortex. As the liquid slowly spins down, one
observes a series of polygons, starting from high m and
evolving toward lower m. Depending on the initial con-
ditions, one can obtain a larger or smaller part of the
sequence m ¼ 6; 5; . . . ; 2 during a single spin-down pro-
cess, until the fluid settles into an approximately quiescent
state, filling the entire bottom. Figure 5 shows a ‘‘triangle’’
obtained in this way, and movies of the spin-down process
are provided in the Supplemental Material [11]. They
correspond roughly to moving downward and slightly to
the left in Fig. 4. It is surprising that one can observe the
polygon states even in a flow set into rotation in a rather
crude way and being disturbed by violent boiling. This
supports our assumption that the boundary layers have
little significance for the occurrence of polygons, which
appears to be a robust wave-coupling phenomenon.
We would like to thank the DGA for support and Erik

Linnartz for helpful comments about the manuscript. T. B.
would like to thank Brdr. Hartmann’s Foundation for
support.
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FIG. 4. Phase diagram showing the state as function of filling height H in cm and the bottom rotation rate f in Hz corresponding to a
cylinder radius of R ¼ 14:5 cm. The shades of grey (going from light grey to black) indicate polygons withm ¼ 2, 3, 4, 5, 6. (a) Phase
diagram from data given in Ref. [2] superimposed with regions of instability for the 2D model using (16). (b) Regions of instability
from the full linearized flow (4) and (5) using (16), including only the simplest unstable mode at each m.

FIG. 5. A rotating triangle formed by stirring liquid nitrogen in
a hot kitchen pot. Polygons with m ¼ 2; . . . ; 6 are observed
during the spin-down process, starting with the m ¼ 6. The
bottom of the pot is Teflon, which gives some unwanted reflec-
tions in the dark triangle.
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