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We predict the existence of a new class of self-accelerating, exponentially localized pulses consisting of

two interacting frequency components propagating at opposite group velocity dispersion. Compared to

previous approaches no external force is required and accelerations of both signs can be realized. This

seemingly paradoxical behavior resembles an all optical wave realization of a classical diametric drive,

where a continuously propulsive effect is achieved by a combination of two fields having effective masses

of opposite sign.
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Self-accelerating entities are fascinating, but also irrita-
ting, because we expect the center of mass of a closed
system to propagate at constant velocity. Any other behav-
ior violates energy and momentum conservation. In fact
when self-acceleration was described for the first time for
charged particles interacting with their own electromag-
netic field and being subject to the Abraham-Lorentz force
those runaway solutions were regarded as mathematical
artifacts [1]. However, Berry and Balazs [2] theoretically
showed that even the free, linear Schrödinger equation
exhibits self-accelerating solutions. This surprising finding
was recently used in optics to create self-bending so-called
Airy beams [3–6]. But, these nondiffracting beams are not
exponentially localized. Their mean intensity decays only
as the inverse square root of the distance. Hence, they
require an infinite amount of energy to exist and neither
a center of mass nor a total momentum can be defined.

Nonlinearity is required to create truly accelerated
exponentially localized field distributions. The nonlinear
Schrödinger equation exhibits localized soliton solutions
but, as it is momentum conserving, an acceleration either
requires an external perturbation or the emission of some
radiation [7–9]. In contrast a non-Hamiltonian perturbation
as the Raman effect in optical fibers can cause true accel-
eration by inducing a redshift, which is transferred into a
velocity shift of pulses by group velocity dispersion [10].
Recently Gorbach and Skryabin showed that such a strong
Raman accelerated pulse can even track and accelerate
weak dispersive waves propagating at normal dispersion
via cross-phase modulation [11,12]. Thus the weak
dispersive wave is blueshifted. This effect, first observed
in Ref. [13], contributes profoundly to supercontinuum
generation in photonic crystal fibers [12]. In this Letter
we take this idea one pivotal step further and consider a
scenario where even without the Raman effect a uniform
self-acceleration of arbitrary sign is achieved, although the
momentum and energy (Hamiltonian) are finite and remain
conserved.

It is known that in a classical two body system the
introduction of hypothetical negative masses has such an

irritating effect [14]. There one considers two gravitational
interacting particles, where one has a positive mass mA,
while the other one has a negative mass mB. Then, the
gravity of the positive mass mA will attract the negative
mass mB while the negative one is repelled. If properly
arranged, one could construct a pair of masses moving with
constant pitch and uniform acceleration. This so-called
diametric drive was originally proposed as the ultimate
propulsion for space drives, but could up to now not be
realized because of the obvious lack of particles with
negative mass [15]. The total momentum of such a self-
accelerating pair

M ¼ mAvA � jmBjvB (1)

can indeed be conserved, even if both particles accelerate
into the same direction. Hence, a constant pitch requires
mA ¼ �mB. Such a condition is obviously odd for me-
chanical systems. However, in solid state physics particles
with negative masses are well known as this requires only
a negative curvature of the respective band structure. The
same can happen in photonic crystal fibers, where the
dispersion relation can have positive or negative curvature,
resulting in normal or anomalous group velocity disper-
sion. To translate the scenario of self-accelerating masses
to nonlinear fiber optics we consider two optical pulses
A and B with different frequencies copropagating in a
photonic crystal fiber and interacting via the cubic Kerr
nonlinearity. The optical field A has a frequency !A in the
anomalous group velocity dispersion (GVD) regime, i.e.,
�2ð!AÞ< 0, which corresponds to an effectively positive
mass. In the presence of a positive Kerr nonlinearity it
forms a Schrödinger soliton, which is known to behave like
a robust and particlelike object even in the presence of
perturbations. Negative mass is achieved by choosing the
frequency !B of pulse B in the normal dispersion regime,
i.e., �2ð!BÞ> 0 (see Fig. 1). Both fields are coupled by
cross-phase modulation, which resembles an analog of the
gravitational interaction in the classical two body case.
We start with the simplest model for the envelope

of two optical pulses propagating under the influence of
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cross-phase modulation in an optical fiber with a frequency
far away from the zero dispersion point [16]:
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Here z is the propagation distance along the fiber, � is the
time in the retarded frame, �A;B ¼ �2ð!A;BÞ are the GVD
values, and �A;B ¼ �ð!A;BÞ are the nonlinear coefficients

at the center frequencies of the pulses. For now we exclude
all higher order effects as Raman scattering or third
order dispersion, and assume that the frequencies of the
pulses are chosen such that their group velocities are
matched (see Fig. 1).

If we compare Eqs. (2) with the Schrödinger equations
for massive particles, we find that they resemble exactly the
scenario of interacting particles with positive (�A < 0) and
negative (�B > 0) mass.Moreover we see thatA is attracted
by the normal dispersive pulse B which itself is repelled
by A. Hence, A pushes B whereas B pulls A and thus all
classical ingredients for a diametric drive are present.

To find self-accelerating solutions of Eqs. (2) with con-
stant pitch we switch to a uniformly accelerated frame by
means of the coordinate transformation s¼��gz2=2 with
acceleration g and apply the Gagnon-Bélanger phase trans-
formation Að�; zÞ ¼ A0ð�� gz2=2Þexp½�igzð�� gz2=6Þ=
�A þ i�z� and Bð�; zÞ ¼ B0ð�� gz2=2Þ exp½�igzð��
gz2=6Þ=�B þ i�z� of the optical fields [17]. Here � and
� are the propagation constants of the soliton and of the
normal dispersive pulse, respectively. Every stationary
solution A0ðsÞ, B0ðsÞ in the new frame correlates to a
uniformly accelerated solution in the lab frame. An accel-
eration g > 0 corresponds to a growing redshift of the
Schrödinger soliton and a permanently increasing blueshift
of the normal dispersive pulse, a situation quite similar to
the Raman effect [11,12]. On the other hand, for g < 0 the

Schrödinger soliton is blueshifted and the normal disper-
sive pulse is redshifted, which has no Raman analog.
Localized pulses, which are stationary in the uniformly

accelerated frame, are determined by
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(3)

Hence, a uniformly accelerated motion is equivalent to the
presence of a linearly growing potential or a constant force
as postulated by Einstein’s equivalence principle [18].
To derive an approximate solution of Eq. (3) we regard

the pulse propagating at anomalous dispersion as a
Schrödinger soliton of fixed form, i.e., A0ðsÞ¼ffiffiffiffiffiffi
PA

p
sechðs=TAÞ. Then TA ¼ ðj�AjLA

NLÞ1=2 is the temporal
width of the Schrödinger soliton with the nonlinear length
scale LA

NL ¼ ð�APAÞ�1 and PA its peak power. The propa-
gation constant is given by� ¼ ð2LA

NLÞ�1. As Schrödinger
solitons are known to be very robust and to behave almost
like a particle we consider the additional potential VAðsÞ ¼
�2�AjB0ðsÞj2 � gs=�A for the Schrödinger soliton in
Eq. (3) to be a small perturbation, which only exerts a
force on it, but does not influence its shape [17,19]. Next
we examine the second of Eqs. (3) for the normal disper-
sive pulse, which according to Eq. (1) should have a power
comparable with that of its companion. Hence, contrary to
Refs. [11,12] we consider the case where the nonlinearity
of the normal dispersive pulse dominates over its disper-
sion, i.e., LB

NL � LB
D. Here, L

B
NL ¼ ð�BPBÞ�1 is the non-

linear length scale and LB
D ¼ T2

B=�B the dispersion length
of B with typical duration TB and peak power PB. In this
case we can apply the Thomas-Fermi approximation to
the second of Eqs. (3) thus neglecting the kinetic term
(dispersion). In what follows we will use this approxima-
tion to obtain some insight into the structure of the solution
and to derive some analytical estimates as, e.g., for the field

shape B0ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½�� VBðsÞ�=�B

p
. Within this approxima-

tion it is entirely defined by the effective potential VBðsÞ ¼
2�BjAðsÞj2 þ gs=�B experienced by the normal dispersive
pulse and by its propagation constant �. To ensure a
localized solution the latter must be chosen such that
VBðsÞ � � < 2�BPA holds in the whole area covered by
the normal dispersive pulse (see Fig. 2). For g < 0 (g > 0)
the normal dispersive pulse is localized on the left-hand
side (right-hand side) of the Schrödinger soliton. For a
fixed power PA we are left with two dynamical parameters:
the acceleration g and the propagation constant �, which
are not independent for a diametric drive with constant
pitch.
A necessary condition for the Schrödinger soliton to be

adiabatically stationary in the accelerated frame is that the
net force exerted on it

FIG. 1 (color online). Panel (a) shows the dispersion curve of a
typical commercial photonic crystal fiber (NL-PM-750), with
�A;B � 0:1 ðWmÞ�1 and a zero group velocity point at �0 �
750 nm. Panel (b) shows the corresponding GVD �2ð!Þ. The
Schrödinger soliton is launched around �A � 850 nm in the
anomalous dispersion regime. For the normal dispersive pulse
we choose the group velocity matched wavelength, at �B �
673 nm. This leads to �A � �20 ps2=km and �B � 20 ps2=km.
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Facc
A ¼ 2�A

Z 1
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jA0ðsÞj2 @jB0ðsÞj2

@s
dsþ gEA

�A

(4)

vanishes, where EA ¼ 2PATA is its energy. This implies
a constant force FA ¼ �gEA=�A in the laboratory
frame. A similar expression FB ¼ gEB=�B based on the
energy EB of the highly nonlinear pulse in the normal
dispersive regime holds in the lab frame. Hence, for a
diametric drive the backaction is crucial. Since our
system is closed, we find that for all localized solutions
the inverted interaction principle FA=�A ¼ FB=�B is

valid. Therefore, the condition for a diametric drive is
satisfied if

EBðg; �Þ
�B�B

¼ � EA

�A�A

(5)

holds (see Fig. 2). This statement implicitly defines the
propagation constant � as a function of the acceleration g
or vice versa. Hence, for fixed soliton peak power PA a
single free parameter is left thus allowing us to choose a
desired acceleration within a certain range. As the above
requirement depends on the pulse energies the optical
diametric drive is a highly nonlinear phenomenon.
To clarify the physical meaning of the above constraint,

we consider the Schrödinger soliton and the localized
normal dispersive pulse as particles. The Schrödinger
soliton moves with the momentary velocity vAðzÞ ¼
�A�AðzÞ ¼ gz, where !AðzÞ ¼ !A þ�AðzÞ is the
momentary frequency in the lab frame. Equivalently we
have vBðzÞ ¼ �B�BðzÞ ¼ gz. Then the conserved total
momentum M of Eqs. (2) is just

Mffiffiffiffiffiffiffiffiffiffiffiffi
�A�B

p ¼ EA

�Aj�AjvA � EB

�B�B

vB: (6)

This relates directly to the classical Eq. (1). Hence, the
requirement [Eq. (5)] is the fiber optical analog of the
classical constraint of equal mass to form a diametric drive.
It is possible to evaluate the condition [Eq. (5)] within the
Thomas-Fermi approximation and to obtain an approxi-
mate analytic expression

gð�Þ � � �B�
2

2�BEA

1� �B�B

�A�A

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

2�BPA

s
þ �

2�BPA

arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

2�BPA

s !�1

; (7)

for an acceleration g < 0. Summarizing, we found a self-
accelerating pair of two nonlinear optical pulses, although
their respective total momentum [Eq. (6)] is conserved.
Note that the center of mass is self-accelerated and not only
each individual pulse. We have to add that strictly speaking
the investigated bound state is only quasistationary as the
normal dispersive pulse is not completely bound by the
effective potential VBðsÞ. There is always a small leakage
towards the Schrödinger soliton. Due to this tunneling loss
every bound state has in principle a finite lifetime, but for
any realistic propagation length it is surprisingly robust and
even survives different types of perturbations.

In order to investigate the dynamical properties of the
bound state we determine its shape as exactly as possible
by numerically calculating the shape of the normal dis-
persive pulse as the bound state of the effective potential
VBðsÞ. To find smooth solutions being localized on one side
of the Schrödinger soliton we artificially kept the potential
at a constant value at the side of the soliton [see the dashed
line in Fig. 2(a)]. Figure 3 shows that robust bound states
with different accelerations can be formed, provided that

Eq. (5) is satisfied. Note that the accelerations in Fig. 3 are
negative, which leads to a blueshift of the Schrödinger
soliton. Next we simulated an experimentally more rele-
vant initial condition for the normal dispersive pulse,

FIG. 2 (color online). Panel (a) shows the effective potential
VBðsÞ for the normal dispersive pulse (for a numerical evaluation
a potential following the dashed line on the s > 0 side of
the soliton is used). The corresponding solution of a diametric
drive is displayed in panel (b). We used �A ¼ �20 ps2=km,
�B ¼ 20 ps2=km, �A;B ¼ 0:1 ðWmÞ�1, PA ¼ 200 mW, and

g ¼ �3 ps=km2 (� � 3:82 km�1). This results in a duration
of TA ¼ 1 ps for the Schrödinger soliton. The condition for a
diametric drive, here EA ¼ EB ¼ 0:4 pJ, is satisfied.

FIG. 3 (color online). Diametric drives for two different accel-
erations (parameters are the same as in Fig. 2). The white dashed
lines indicate the accelerated paths with g ¼ �1 ps=km2 and
g ¼ �3 ps=km2, respectively. Insets show the intensity profiles
at z ¼ 20 km in the case of g ¼ �3 ps=km2. Panel (a) shows the
Schrödinger solitons and panel (b) the corresponding normal
dispersive pulses.
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namely a Gaussian pulse of the form Bð�; z ¼ 0Þ ¼ffiffiffiffiffiffi
PB

p
exp½�ð����Þ2=ð2T2

BÞ�. As the bound state has still
a free parameter, i.e., the acceleration, it can easily adapt to
a nonperfect initial condition. A stable bound state forms,
if peak power PB, width TB, and delay �� of the Gaussian
wave packet are chosen such that they approximately
match the ideal configuration displayed in Fig. 2(b).
Obviously some power is initially emitted until a stable
self-accelerating state is formed [see Fig. 4(a)]. The
robustness of our approach is further illustrated by a col-
lision of two bound states having opposite acceleration.
Surprisingly, the diametrically driven states survive such a
collision provided that their relative velocity is large
enough [see Fig. 4(b)]. If their mutual interaction becomes
too intense due to a small relative velocity the bound state
breaks apart in the course of a violent explosion, where
the two Schrödinger solitons get ejected with high speed
and the normal dispersive pulse starts spreading immedi-
ately [see Figs. 4(c) and 4(d)]. As soon as the normal and
anomalous dispersive waves have separated the velocities
of all components stay constant, demonstrating that accel-
eration is a truly collective effect in the system.

For Schrödinger solitons with durations of less than 1 ps
we cannot neglect the Raman effect or third order disper-
sion. However, even in the presence of the Raman effect we
are still able to construct a diametric drive. In the frame-
work of our mechanical model the Raman effect just adds
an additional external force acting almost exclusively on
the Schrödinger soliton and thus changing the requirement
[Eq. (5)] to EBðg; �Þ=ð�B�BÞ ¼ �EAð1� gR=gÞ=ð�A�AÞ,

where gR ¼ 8TR�
2
A=ð15T4

AÞ is the Raman acceleration of a

Schrödinger soliton and TR is the Raman response time
[10,16]. Note that for ultrashort solitons the Raman term is
dominant and the additional acceleration due to the normal
dispersive pulse becomes a small perturbation [12]. In this
case the compound state can no longer be termed self-
accelerating, since the main contribution originates from
the dissipative Raman effect.
Considering the third order dispersion of the fiber pre-

sented in Fig. 1, we find that its main influence is to change
the resulting acceleration in the same way as it does for
a single Schrödinger soliton [16]. As demonstrated in
Fig. 5 the diametric drive is in general very robust with
respect to the influence of the Raman effect and third order
dispersion.
In conclusion, we found a novel self-accelerating bound

state of two nonlinear optical pulses. Such a diametric
drive is robust under collisions and the influence of small
perturbations like the Raman effect and third order disper-
sion. For pulse durations of TA * 100 fs the frequency
shift induced by a diametric drive outplays the Raman
shift. Moreover, with a diametric drive it is possible to
red- and blueshift a normal dispersive pulse or a
Schrödinger soliton in a controlled manner. Our findings
suggest implications for several applications such as the
generation of supercontinua in photonic crystal fibers
[11,20] or tunable Raman laser sources [21].
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