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The astrophysical S factor for proton-proton weak capture is calculated in chiral effective field theory

over the center-of-mass relative-energy range 0–100 keV. The chiral two-nucleon potential derived up to

next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including,

beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants entering

the weak current operators are fixed so as to reproduce the A ¼ 3 binding energies and magnetic moments

and the Gamow-Teller matrix element in tritium � decay. Contributions from S and P partial waves in the

incoming two-proton channel are retained. The S factor at zero energy is found to be Sð0Þ ¼ ð4:030�
0:006Þ � 10�23 MeV fm2, with a P-wave contribution of 0:020� 10�23 MeV fm2. The theoretical

uncertainty is due to the fitting procedure of the low-energy constants and to the cutoff dependence.
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The proton weak capture on protons, i.e., the reaction
1Hðp; eþ�eÞ2H (hereafter labeled pp), is the most funda-
mental process in stellar nucleosynthesis: it is the first
reaction in the pp chain, which converts hydrogen into
helium in main sequence stars like the Sun. Its reaction rate
is expressed in terms of the astrophysical S factor, SðEÞ,
where E is the two-proton center-of-mass (c.m.) energy. At
the center of light stars like the Sun, with temperature of
the order of 1:5� 107 K, the Gamow peak is at E ’ 6 keV.
At these energies, the reaction cross section cannot be
measured in terrestrial laboratories, and it is necessary to
rely on theoretical predictions, which are typically given
for Sð0Þ—the zero-energy value of the S factor. The many
studies on Sð0Þ have been extensively reviewed in Ref. [1]
and are succinctly summarized in the following.

The currently recommended value for Sð0Þ, ð4:01�
0:01Þ � 10�23 MeV fm2 [1], is the average of values
obtained within three different approaches, labeled poten-
tial models (PM), hybrid chiral effective field theory
(�EFT�), and pionless effective field theory (�EFT). The
first one uses phenomenological realistic models for the
nuclear potential, fitted to reproduce the large body of two-
nucleon (NN) bound and scattering state data with a
�2=datum� 1. The axial current operator includes both
one-body terms, determined from the coupling of the
single nucleon to the weak probe, and two-body terms,
derived from meson-exchange mechanisms and the exci-
tation of �-isobar resonances. These two-body terms are
constrained to reproduce the experimental value of the
Gamow-Teller (GT) matrix element of tritium � decay.

In the hybrid approach, transition operators derived in
�EFT are sandwiched between initial and final wave func-
tions generated by potential models. The only unknown
low-energy constant (LEC), which parametrizes the

strength of a contact-type four-nucleon coupling to the
axial current, is determined by fitting the experimental
GT matrix element.
Finally,�EFT is an effective field theory approach ap-

plicable to low-energy processes—such as the pp reaction
under consideration here—with a characteristic momen-
tum Q much smaller than the pion mass m�. In such a
theory, pions are integrated out and the NN interaction and
weak currents are described by classes of pointlike contact
interactions, each class corresponding to given order in a
systematic expansion in powers of Q=m�.
The energy dependence of SðEÞ in the pp capture (and

other reactions as well in the pp chain) is often parame-
trized as [1]

SðEÞ ¼ Sð0Þ þ S0ð0ÞEþ S00ð0ÞE2=2þ � � � ; (1)

where S0ð0Þ and S00ð0Þ are the first and second derivatives of
SðEÞ, evaluated at E ¼ 0. For S0ð0Þ and S00ð0Þ the situation
is much less clear than for Sð0Þ. The adopted value for S0ð0Þ
in Ref. [1] is S0ð0Þ=Sð0Þ ¼ ð11:2� 0:1Þ MeV�1, as
obtained in Ref. [2] and later confirmed in Ref. [3] in a
PM approach. No value is reported for S00ð0Þ in Ref. [1]. In
Ref. [2] it was estimated by dimensional considerations
that the contribution of S00ð0Þ to the pp rate would be at the
level of 1% for temperatures characteristic of the solar
interior. Only very recently, S0ð0Þ and S00ð0Þ have been
calculated in �EFT [4] to the third order in the power
expansion with the results S0ð0Þ=Sð0Þ ¼ ð11:3�
0:1Þ MeV�1 and S00ð0Þ=Sð0Þ ¼ ð170� 2Þ MeV�2. In con-
clusion, a systematic study of SðEÞ in (pionfull) �EFT is
still missing. We address this omission in this Letter.
The NN potential is that derived in �EFT up to next-to-

next-to-next-to leading order (N3LO) in the chiral expan-
sion by Entem and Machleidt [5,6]. However, in the pp
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sector it is augmented by the inclusion of higher-order
electromagnetic terms, due to two-photon exchange and
vacuum polarization. These higher-order terms are the
same as those of the Argonne v18 (AV18) NN potential
[7], and therefore also retain short-range corrections asso-
ciated with the finite size of the proton charge distribution.
The additional distortion of the ppwave function, induced
primarily by vacuum polarization, has been shown to
reduce Sð0Þ by �1% in Ref. [3].

The charge-changing weak current has been derived up
to N3LO in Ref. [8]. Its polar-vector part is related, via the
conserved-vector-current constraint, to the (isovector)
electromagnetic current and includes, apart from one-
and two-pion-exchange terms, two contact terms—one
isoscalar and the other isovector—whose strengths are
parametrized by the LECs g4S and g4V . The two-body
axial-vector current includes terms of one-pion range as
well as a single contact current, whose strength is parame-
trized by the LEC dR. The latter is related to the LEC cD,
which, together with cE, enters the three-nucleon (NNN)
potential at next-to-next-to leading order, as illustrated
in Fig. 1.

These chiral potentials and currents have power-law
behavior in momentum space, and must be regularized
before they can be used in practical calculations. This is
accomplished by multiplying them by a momentum-cutoff
function, whose cutoff � is taken to be in the range
(500–600) MeV. Finally, we should note that inclusion of
such a cutoff spoils the requirement of conserved-vector
and partially conserved axial currents. In particular, we
note that the construction of a conserved vector current
with the N3LO NN potential used here would require
accounting for two-loop corrections, a task well beyond
the present state of the art.

The LECs cD (or dR), cE, g4S, and g4V are determined
with the procedure discussed in Ref. [9]. First, the values of
the LECs fcD; cEg which reproduce the A ¼ 3 binding
energies are obtained for both � ¼ 500 and 600 MeV,
with cD in the range (�3, 3). Next, within this range, the
GT matrix element is calculated and cD (or equivalently
dR) is fixed to reproduce its experimental value. The range
of cD values, for which the calculated GTmatrix element is
within the lower and upper limits of its experimental
determination, are (�0:20, �0:04) for � ¼ 500 MeV

and (�0:32, �0:19) for � ¼ 600 MeV. The correspond-
ing ranges for cE are (�0:208, �0:184) and (�0:857,
�0:833), respectively [9]. Lastly, for the minimum and
maximum values of fcD; cEg and the given �, the isoscalar
and isovector LECs g4S and g4V are determined by repro-
ducing the A ¼ 3magnetic moments. The values for all the
LECs are listed in Table I of Ref. [9]. Indeed, in that work it
was shown that the consistent �EFT approach outlined
above leads to predictions (with an estimated theory un-
certainty of about 1%) for the rates of muon capture on
deuteron and 3He that are in excellent agreement with the
experimental data.
All earlier studies of the pp capture we are aware of (see

Ref. [1] and references therein) have only considered the
1S0 channel in the initial pp scattering state. Since one of

the objectives of the present work is to study the energy
dependence of the S factor up to E ¼ 100 keV, we include,
in addition to the 1S0, the P-wave channels 3P0,

3P1, and
3P2. We outline the calculation in the following, deferring
a more extended discussion of it to a later paper [10].
The ppweak capture cross section�ðEÞ, fromwhich the

S factor is obtained as SðEÞ ¼ E expð2��Þ�ðEÞ (� ¼
�=vrel, � being the fine structure constant and vrel the
pp relative velocity), is written in the c.m. frame as

�ðEÞ¼
Z
2��

�
�mþE� q2

2md

�Ee�E�

�

� 1

vrel

FðZ;EeÞ14
X
ses�

X
s1s2sd

jhfjHW jiij2 dpe

ð2�Þ3
dp�

ð2�Þ3 ;

(2)

where �m ¼ 2mp �md (mp and md are the proton and

deuteron masses, respectively), pe (p�) and Ee (E�) are the
electron (neutrino) momentum and energy, q ¼ pe þ p�

is the momentum transfer, and FðZ; EeÞ is the Fermi func-
tion (with Z ¼ 1), which accounts for the Coulomb dis-
tortion of the final positron wave function. Its explicit
expression can be found in Ref. [11], increased by 1.62%
to take into account radiative corrections to the cross
section [12]. The transition amplitude is given by

hfjHW jii ¼ GVffiffiffi
2

p l�h�q;djjy�jp;ppi; (3)

where GV is the Fermi constant (GV ¼ 1:14939�
10�5 GeV�2 [13]), j � q;di and jp;ppi represent, respec-
tively, the deuteron bound state with recoiling momentum
�q and the pp scattering state with relative momentum p,
and l� and j�ðqÞ are the leptonic and nuclear weak cur-
rents, respectively. A standard multipole decomposition of
the nuclear weak current operator leads to [14]

1

4

X
ses�

X
s1s2sd

jhfjHW jiij2 ¼ ð2�Þ2G2
VL�	N

�	; (4)

D E
c c d

R

FIG. 1. One-pion exchange plus NN contact, and NNN con-
tact terms entering the three-nucleon potential at next-to-next-to
leading order, and the contact term entering the NN axial
current. Solid, dashed, and wavy lines represent, respectively,
the nucleon, pion, and external probe.
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where the lepton tensor L�	 is written in terms of electron
and neutrino four velocities, and the nuclear tensor is
defined as

N�	 ¼ X
s1s2sd

W�ðq; s1s2sdÞW	�ðq; s1s2sdÞ; (5)

with

W�¼0;3ðq; s1s2sdÞ ¼
X

LSJ;��0

XLSJ�
0 ðq̂; s1s2sdÞTLSJ

� ðqÞ;

(6)

W�¼
ðq; s1s2sdÞ ¼ � 1ffiffiffi
2

p X
LSJ;��1

XLSJ�
�
 ðq̂; s1s2sdÞ

� ½
MLSJ
� ðqÞ þ ELSJ

� ðqÞ�; (7)

where 
 ¼ �1 denote spherical components. The spin-
quantization axis for the hadronic states is taken along
the direction p̂ of the pp relative momentum. The func-
tions XLSJ�


¼0;�1ðq̂; s1s2sdÞ depend on the direction q̂, the

proton and deuteron spin projections s1, s2, and sd, and
we have used the notation TLSJ

� ðqÞ ¼ CLSJ
� ðqÞ or LLSJ

� ðqÞ
for � ¼ 0 or 3. The quantities CLSJ

� ðqÞ, LLSJ
� ðqÞ, MLSJ

� ðqÞ,
and ELSJ

� ðqÞ are, respectively, the reduced matrix elements

for the Coulomb, longitudinal, transverse magnetic, and
transverse electric multipole operators between the initial
pp state with orbital angular momentum L, channel spin S
(S ¼ 0, 1), total angular momentum J, and the final deu-
teron state with total angular momentum Jd ¼ 1. The
number � in Eqs. (6) and (7) is the multipole order, with
�þ J ¼ Jd. The integrations over pe and p� are per-
formed by Gaussian quadratures [14], and a moderate
number of Gauss points (�10–20 for each integration)
suffices to achieve convergence to within better than 1
part in 103.

The two-body wave functions corresponding to the non-
local chiral potentials of Refs. [5,6] have been obtained
variationally with the technique described in Ref. [15]. In
the present work, there is the complication due to the
presence, in the pp sector, of higher-order corrections
(from two-photon exchange and vacuum polarization) in
the electromagnetic potential vemðrÞ. We proceed in the
following way. We first calculate the regular and irregular
solutions corresponding to vemðrÞ only by direct integra-
tion of the Schrödinger equation—these are denoted as

�ðRÞ and �ðIÞ. We then expand the pp continuum wave
function in channel � 	 LSJJz as

�� ¼ X
�

c���
�
� þ�ðRÞ

� þX
�0
R��0�ðIÞ

�0 ; (8)

where ��
� are known functions written as the product of

Laguerre polynomials [see Eq. (3.1) of Ref. [15]], which
vanish at large interparticle separations. Clearly, the

dependence on the NN potential enters only in the
unknown coefficients c� and matrix elements R��0 , which

are determined via the Kohn variational principle. A sys-
tem of linear inhomogeneous equations for the c�’s and a

set of algebraic equations for the R��0’s result, which are
solved by standard techniques. From the R��0’s, phase
shifts and mixing angles are easily obtained. We have
verified that, in the case of the AV18, the method outlined
above leads to 1S0 phase shifts in agreement with those

reported for the AV18 in Ref. [7] [which included the same
vemðrÞ used here]. We have also verified that we are able to
reproduce the N3LO phase shifts of Ref. [6], obtained by
including only the Coulomb potential in vemðrÞ. Further
details will be reported in a later publication [10].
The cumulative S- and P-wave contributions to the

astrophysical S factor at zero energy are listed in Table I.
Inspection of the table shows that (i) the cutoff dependence
is negligible as is the overall theoretical uncertainty (well
below 1%) due to the procedure adopted to fit the LECs
entering the current, (ii) the P-wave contributions to Sð0Þ
sum up to �1% of the total value, and (iii) the results can
be summarized in the conservative range Sð0Þ ¼ ð4:030�
0:006Þ � 10�23 MeV fm2. For comparison, we have also
calculated Sð0Þ within the PM approach, using the AV18
potential and the same model for the nuclear current of

TABLE I. Cumulative S- and P-wave contributions to the
astrophysical S factor at zero c.m. energy in units of
10�23 MeV fm2. The theoretical uncertainties are given in pa-
rentheses and are due to the fitting procedure adopted for the
LECs in the weak current. The results have been obtained with
the two different cutoff values � ¼ 500 and 600 MeV.

1S0
3P0

3P1
3P2

� ¼ 500 MeV 4.008(5) 4.011(5) 4.020(5) 4.030(5)

� ¼ 600 MeV 4.008(5) 4.010(5) 4.019(5) 4.029(5)
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FIG. 2 (color online). The astrophysical S factor as a function
of the c.m. energy in the range 0–100 keV. The S- and (Sþ P)-
wave contributions are displayed separately. In the inset, SðEÞ is
shown in the range 3–15 keV.
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Refs. [3,14,15], obtaining Sð0Þ¼ ð4:033�0:003Þ�
10�23 MeV fm2 [Sð0Þ¼ð4:000�0:003Þ�10�23MeVfm2]
when all the S and P waves (only the 1S0 channel) are

included. The agreement between the PM and �EFT
results is excellent. Finally, it should be noted that the
1S0 S factor, in units of 10�23 MeV fm2, obtained with

the pure Coulomb interaction, is 4.025 when � ¼
500 MeV and 4.030 within the PM approach with the
AV18. Therefore, while the full electromagnetic interac-
tion accounts for a �1% reduction in Sð0Þ, this effect is in
practice offset by the P-wave contributions.

The energy dependence of SðEÞ is shown in Fig. 2. The
S- and (Sþ P)-wave contributions are displayed separately,
and the theoretical uncertainty is included—the curves are
in fact very narrow bands. As expected, the P-wave con-
tributions become significant at higher values of E.

Next, we examine the question of whether the polyno-
mial approximation for SðEÞ given in Eq. (1) is justified.
To this end, we have performed a least-squares polynomial
fit to SðEÞ up to order OðE2Þ, i.e., by using Eq. (1) itself,
and up to order OðEnÞ, by adding terms Snð0ÞEn=n!, with

n ¼ 3, 4 [Snð0Þ is the nth derivative of SðEÞ evaluated at
E ¼ 0]. The values for Snð0Þ, with n ¼ 1–4, are listed in
Table II, along with the �2 value, which we define as the
sum over all the energy grid values of the ‘‘normalized’’
residuals, �2 ¼ P

ið1� ffiti =f
calc
i Þ2, where fcalci (ffiti ) are

the calculated (fitted) SðEÞ results. By inspection of the
table, we conclude that the values of Snð0Þ are strongly
dependent on the order of the polynomial function.
However, an accurate description of the data can be
obtained with a desired degree of accuracy by increasing
the number of polynomial terms. With a cubic fit, for
instance, �2 � 10�4 indicates that the calculated SðEÞ val-
ues are nicely reproduced. This can be appreciated also in
Fig. 3, where the cubic fit is compared with the results for
SðEÞ obtained retaining all (Sþ P) waves or only the 1S0
channel, using � ¼ 500 MeV with one particular value of
cD (cD ¼ �0:20). The curve obtained using Eq. (1) with
the values for Sð0Þ, Sn¼1ð0Þ, and Sn¼2ð0Þ of Ref. [4] is also
shown. For energies up to 15 keV, the differences between
our 1S0 results and those of Ref. [4] are very small.

However, at energies of 25–30 keVor higher, the quadratic
fit of Ref. [4] starts to be significantly different from the
calculated values, as well as from the cubic fit.
Finally, using the results corresponding to the cubic fit in

Table II, we have calculated that the linear and quadratic
contributions to SðEÞ at the solar Gamow peak are of the
order of 7% and 0.5%, respectively, while the cubic one is
negligible. This is in agreement with Refs. [2,4]. On the
other hand, for larger-mass stars, whose central tempera-
ture is of the order of 5� 107 K and the Gamow peak is at
E� 15 keV, the linear, quadratic, and cubic contributions
become of the order of 18%, 3%, and 0.7%, respectively.
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