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We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f�ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.
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An important goal in high energy physics is to make
perturbative QCD (pQCD) predictions as precise as pos-
sible, not only to test QCD itself, but also to expose new
physics beyond the standard model. In this Letter we
present a systematic method which determines the argu-
ment of the running coupling order by order in pQCD and
which can be readily automatized. The resulting predictions
for physical processes are independent of theoretical con-
ventions such as the choice of renormalization scheme and
the initial choice of renormalization scale. The resulting
scales also determine the effective number of quark flavors
at each order of perturbation theory. The method can be
applied to processes with multiple physical scales and is
consistent with QED scale setting in the limit Nc ! 0. The
new method satisfies all of the principles of the renormal-
ization group [1], and it eliminates an unnecessary source
of systematic error.

The starting point for our analysis is to introduce a
generalization of the conventional schemes used in dimen-
sional regularization in which a constant �� is subtracted

in addition to the standard subtraction ln4�� �E of theMS
scheme. This amounts to redefining the renormalization
scale by an exponential factor; i.e., �2

� ¼ �2
MS

expð�Þ. In
particular, the MS scheme is recovered for � ¼ ln4�� �E.
The � subtraction defines an infinite set of renormalization
schemes which we call �-Renormalization (R�) schemes;
since physical results cannot depend on the choice of
scheme, predictions must be independent of �. Moreover,
since all R� schemes are connected by scale displace-
ments, the � function of the strong QCD coupling constant
a ¼ �s=4� is the same in any R� scheme:

�2
�

da

d�2
�

¼ �ðaÞ ¼ �að��Þ2
X1
i¼0

�iað��Þi: (1)

The R� scheme exposes the general pattern of non-
conformal f�ig terms, and it reveals a special degeneracy
of the terms in the perturbative coefficients which allows
us to resum the perturbative series. The resummed series
matches the conformal series, which is itself free of any
scheme and scale ambiguities as well as being free of a
divergent renormalon series. It is the final expression one
should use for physical predictions. It also makes it pos-
sible to set up an algorithm for automatically computing
the conformal series and setting the effective scales for the
coupling constant at each perturbative order.
Consider an observable in pQCD in some scheme which

we put as the reference scheme R0 (e.g., the MS scheme,
which is the conventional scheme used) with the following
expansion:

�0ðQ2Þ ¼ X1
i¼0

riðQ2=�2
0Það�0Þi; (2)

where�0 stands for the initial renormalization scale andQ
is the kinematic scale of the process. The more general
expansion with higher Born-level power in a can be readily
derived [2] and will not change our conclusions and results.
The full pQCD series is formally independent of the choice
of the initial renormalization scale�0, if it were possible to
sum the entire series. However, this goal is not feasible
in practice, especially because of the n!�n�n

s renormalon
growth of the nonconformal series. When a perturbative
expansion is truncated at any finite order, it generally
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becomes renormalization-scale and scheme dependent,
i.e., dependent on theoretical conventions. This can be
exposed by using the R� scheme. Since results in any
R� are related by scale displacements, we can derive a
general expression for � by using the displacement relation
between couplings in any R� scheme:

að�0Þ ¼ að��Þ þ
X1
n¼1

1

n!

dnað�Þ
ðd ln�2Þn

���������¼��

ð��Þn; (3)

where we used ln�2
0=�

2
� ¼ ��. Then � inR� to order a4

reads:

��ðQ2Þ¼r0þr1a1ð�1Þþðr2þ�0r1�1Þa2ð�2Þ2
þ½r3þ�1r1�1þ2�0r2�2þ�2

0r1�
2
1�a3ð�3Þ3

þ½r4þ�2r1�1þ2�1r2�2þ3�0r3�3þ3�2
0r2�

2
2

þ�3
0r1�

3
1þ

5

2
�1�0r1�

2
1�a4ð�4Þ4þOða5Þ; (4)

where �2
i ¼ Q2e�i , the initial scale is for simplicity set to

�2
0 ¼ Q2, and we defined rið1Þ ¼ ri. An artificial index

was introduced on each a and � to keep track of which
coupling each � term is associated with. The initial scale
choice is arbitrary and is not the final argument of the
running coupling; the final scales will be independent of
the initial renormalization scale.

In a conformal (or scale-invariant) theory, where f�ig ¼
f0g, the � dependence vanishes in Eq. (4). Therefore, by
absorbing all f�ig dependence into the running coupling
at each order, we obtain a final result independent of the
initial choice of scale and scheme. The use ofR� allows us
to put this on rigorous grounds. From the explicit expres-
sion in Eq. (4), it is easy to confirm that

@��

@�
¼ ��ðaÞ@��

@a
: (5)

The scheme invariance of the physical prediction requires
that @��=@� ¼ 0. Therefore, the scales in the running cou-
pling must be shifted and set such that the conformal terms
associated with the � function are removed; the remaining
conformal terms are by definition renormalization scheme
independent. The numerical value for the prediction at finite
order is then scheme independent as required by the renor-
malization group. The scheme-invariance criterion is a theo-
retical requirement of the renormalization group; it must be
satisfied at any truncated order of the pertubative series, and
it is different from the formal statement that the all-orders
expression for a physical observable is renormalization-scale

and scheme invariant; i.e., d�=d�0 ¼ 0. The final series
obtained corresponds to the theory for which �ðaÞ¼0, i.e.,
the conformal series. This demonstrates to any order the
concept of the principal of maximum conformality (PMC)
[3,4], which states that all nonconformal terms in the pertur-
bative series must be resummed into the running coupling.
The expression in Eq. (4) exposes the pattern of f�ig

terms in the coefficients at each order. Such a pattern was
recently considered in Ref. [5]. The R� scheme reveals its
origin and its generality for any pQCD prediction. It is
possible to infer more from Eq. (4): since there is nothing
special about a particular value of �, we conclude that some
of the coefficients of the f�ig terms are degenerate; e.g., the
coefficient of �0aðQÞ2 and�1aðQÞ3 can be set equal. Thus,
for any scheme, the expression for � can be put to the form:

�ðQ2Þ¼ r0;0þr1;0aðQÞþ½r2;0þ�0r2;1�aðQÞ2
þ½r3;0þ�1r2;1þ2�0r3;1þ�2

0r3;2�aðQÞ3

þ½r4;0þ�2r2;1þ2�1r3;1þ5

2
�1�0r3;2

þ3�0r4;1þ3�2
0r4;2þ�3

0r4;3�aðQÞ4þOða5Þ; (6)

where the ri;0 are the conformal parts of the perturbative

coefficients; i.e., ri ¼ ri;0 þOðf�igÞ. The R� scheme not

only illuminates the f�ig pattern, but it also exposes a
special degeneracy of coefficients at different orders. The
degenerate coefficients can themselves be functions of f�ig;
hence, Eq. (6) is not to be understood as an expansion in
f�ig, but a pattern in f�ig with degenerate coefficients that
must be matched. We have checked that this degeneracy
holds for several known results.
The expansion in Eq. (4) reveals how the f�ig terms must

be absorbed into the running coupling. The different �k’s
keep track of the power of the 1=� divergence of the
associated diagram at each loop order in the following
way: the �p

ka
n term indicates the term associated with a

diagram with 1=�n�k divergence for any p. Grouping the
different �k terms, one recovers in the Nc ! 0 Abelian
limit [6] the dressed skeleton expansion. Resumming the
series according to this expansion thus correctly reprodu-
ces the QED limit of the observable and matches the
conformal series with running coupling constants eval-
uated at effective scales at each order.
Using this information from the �k expansion, it can be

shown that the order aðQÞk coupling must be resummed
into the effective coupling aðQkÞk, given by

r1;0aðQ1Þ ¼ r1;0aðQÞ � �ðaÞr2;1 þ 1

2
�ðaÞ@�

@a
r3;2 þ � � � þ ð�1Þn

n!

dn�1�

ðd ln�2Þn�1
rnþ1;n; (7)

..

.

rk;0aðQkÞk ¼ rk;0aðQÞk þ rk;0kaðQÞk�1�ðaÞfRk;1 þ�ð1Þ
k ðaÞRk;2 þ � � � þ�ðn�1Þ

k ðaÞRk;ng; (8)
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which defines the PMC scales Qk and where we introduced

Rk;j ¼ ð�1Þj rkþj;j

rk;0
; �ð1Þ

k ðaÞ ¼ 1

2

�
@�

@a
þ ðk� 1Þ�

a

�
; . . . : (9)

Equation (8) is systematically derived by replacing the lnjQ2
1=Q

2 by Rk;j in the logarithmic expansion of aðQkÞk up to the
highest known Rk;n coefficient in pQCD. The resummation can be performed iteratively using the renormalization group
equation for a and leads to the effective scales for a next-to-next-to-next-to leading order (NNNLO) prediction (detailed
derivations will be given elsewhere [2]):

ln
Q2

k

Q2
¼ Rk;1 þ �ð1Þ

k ðaÞRk;2 þ�ð2Þ
k ðaÞRk;3

1þ �ð1Þ
k ðaÞRk;1 þ ½�ð1Þ

k ðaÞ�2ðRk;2 � R2
k;1Þ þ�ð2Þ

k ðaÞR2
k;1

: (10)

The final pQCD prediction for � after setting the PMC
scales Qi then reads

�ðQ2Þ ¼ r0;0 þ r1;0aðQ1Þ þ r2;0aðQ2Þ2 þ r3;0aðQ3Þ3
þ r4;0aðQ4Þ4 þOða5Þ; (11)

Note thatQ4 remains unknown. This last ambiguity resides
only in the highest order coupling constant, and is negli-
gible in practice.

It is easy to see to leading logarithmic order (LLO) that
the effective scales are independent of the initial renorm-
alization scale �0. This follows since taking �0 � Q we
must replace Rk;1 ! Rk;1 þ lnQ2=�2

0 and thus the leading

order effective scales read lnQ2
k;LO=�

2
0 ¼ Rk;1 þ lnQ2=�2

0,

where�0 cancels and Eq. (10) at leading logarithmic order
is recovered. This generalizes to any order. In practice,
however, since the � function is not known to all orders, a
higher order residual renormalization-scale dependence
will enter through the running coupling constant. This
residual renormalization-scale dependence is strongly sup-
pressed in the perturbative regime of the coupling [7].

The effective scales contain all the information of the
nonconformal parts of the initial pQCD expression for � in
Eq. (6), which is exactly the purpose of the running cou-
pling constant. The quotient form of Eq. (10) sums up an
infinite set of terms related to the known rj;k�0 which

appear at every higher order due to the special degeneracy.
It is, however, not the full solution since this requires the
knowledge of the rj;k�0 terms to all orders. The method

systematically sums up all known nonconformal terms, in
principle to all orders, but is in practice truncated due to the
limited knowledge of the � function.

In earlier PMC scale setting [4], and its predecessor, the
Brodsky-Lepage-Mackenzie (BLM) method [8], the PMC/
BLM scales have been set by using a perturbative expan-
sion in a and only approximate conformal series have been
obtained. Here, we have been able to obtain the conformal
series exactly due to the revelation of the f�ig pattern by
R�; the effective scales have naturally become functions
of the coupling constant through the � function, in princi-
ple, to all orders.

In many cases the coefficients in a pQCD expression
for an observable are computed numerically, and the f�ig

dependence is not known explicitly. It is, however, easy to
extract the dependence on the number of quark flavors Nf,

since Nf enters analytically in any loop diagram computa-

tion. To use the systematic method presented in this Letter
one puts the pQCD expression into the form of Eq. (6).
Because of the special degeneracy in the coefficient of the
f�ig terms, the Nf series can be matched to the rj;k coef-

ficients in a unique way. (In principle, one must treat the Nf

terms unrelated to renormalization of the gauge coupling as
part of the conformal coefficient.) This allows one to auto-
mate the scale setting process algorithmically.
The general Nf series of the nth order coefficient in

pQCD reads:

rn ¼ cn;0 þ cn;1Nf þ � � � þ cn;n�1N
n�1
f : (12)

By inspection of Eq. (6) it is seen that there are exactly as
many unknown coefficients in the f�ig expansion at the
order an as the Nf coefficients, cn;j. This is realized due to

the special degeneracy found in (6). The ri;j coefficients in

Eq. (6) can thus be expressed in terms of the cn;j coeffi-

cients. This means that theNf terms can unambiguously be

associated with f�ig terms and demonstrates PMC as the
underlying principle of BLM scale setting. The relations
between cn;j and ri;j are easy to derive and they transform

the BLM scales into the correct PMC scales [2].
The automation process can be outlined as follows.

(i) Choose any �-Renormalization scheme and scale,
(ii) compute the physical observable in pQCD and extract
the Nf coefficients, ck;j, (iii) find the �i coefficients, rk;j
from the ck;j coefficients and compute the PMC scales,Qk,

(iv) the final pQCD expression for the observable reads
�finalðQÞ ¼ P

k¼0rk;0aðQkÞk.
As a final remark, we note that the PMC can be used to

set separate scales for different skeleton diagrams; this is
particularly important for multiscale processes. In general,
the f�ig coefficients multiply terms involving logarithms
in each of the invariants [3]. For instance, in the case of
q �q ! Q �Q near the heavy quark threshold in pQCD, the
PMC assigns different scales to the annihilation process
and the rescattering corrections involving the heavy
quarks’ relative velocity [9]. It also can be used to set the
scale for the ‘‘lensing’’ gluon-exchange corrections that
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appear in the Sivers, Collins, and Boer-Mulders effects.
Moreover, for the cases when the process involves several
energy regions, e.g., hard, soft, etc., one may adopt meth-
ods such as the nonrelativistic QCD effective theory [10]
and the soft-collinear effective theory [11] to set the PMC
scales; i.e., one first sets the PMC scales for the higher
energy region, then integrates it out to form a lower energy
effective theory and sets the PMC scales for this softer
energy region, etc. In this way one obtains different effec-
tive PMC scales for each energy region, at which all the
PMC properties also apply.

Example: eþe� ! hadrons.—The ratio for electron-

positron annihilation into hadrons, Reþe�!h, was recently
computed to order a4 [12] and can be shown to exactly
match the generic form of Eq. (6). It can be derived by
analytically continuing the Adler function D into the time-
like region, with D given by

DðQ2Þ ¼ �ðaÞ � �ðaÞ d

da
�ðQ2; aÞ; (13)

where � is the anomalous dimension of the vector field,�
is the vacuum polarization function, and they are given by
the perturbative expansions �ðaÞ ¼ P1

n¼0 �na
n and

�ðaÞ ¼ P1
n¼0 �na

n. It is easy to show that to order a4

the perturbative expression for Reþe�!h in terms of �n and
�n reads:

Reþe�!hðQÞ¼�0þ�1aðQÞþ½�2þ�0�1�aðQÞ2

þ
�
�3þ�1�1þ2�0�2

��2
0

�2�1

3

�
aðQÞ3þ

�
�4þ�2�1þ2�1�2

þ3�0�3�5

2
�0�1

�2�1

3

�3�2
0

�2�2

3
��3

0�
2�1

�
aðQÞ4: (14)

This expression has exactly the form of Eq. (6) with the
identification ri;0 ¼ �i, ri;1 ¼ �i�1, ri;2 ¼ �ð�2=3Þ�i�2,

and ri;3 ¼ ��2�i�3. The �i contain Nf terms, but since

they are independent of � to any order, they are kept fixed
in the scale-setting procedure. Note that we have knowl-
edge of even higher order ri;j coefficients, and this allows

us to set the effective scalesQ1,Q2, andQ3 to the NNNLO,
given by Eq. (10). It is worth noting that the Adler function
D itself has a much simpler f�ig structure. By convention,
the argument of a is spacelike; thus, the �2 terms appear-

ing in Reþe�!h could be avoided by using a coupling
constant with a timelike argument, leading to a more
convergent series [13].

The last unknown scale in Eq. (14) can be estimated. It
turns out thatQ4 �Q, which is the value we have used [2].
The expressions for the coefficients �i and�i can be found

in Ref. [12], and the four-loops � function is given in
Ref. [14]. The final result in numerical form in terms of
� ¼ �s=� for QCD with five active flavors reads:

3

11
Reþe�!hðQÞ ¼ 1þ �ðQ1Þ þ 1:84�ðQ2Þ2

� 1:00�ðQ3Þ3 � 11:31�ðQ4Þ4: (15)

This is a more convergent result compared to previous
estimates, and it is free of any scheme and scale ambigu-
ities (up to strongly suppressed residual ones).
To find numerical values for the effective scales, the

asymptotic scale � of the running coupling must first be
determined by matching Eq. (15) with experimental results

[15]: 3
11R

eþe�!h
exp ð ffiffiffi

s
p ¼31:6GeVÞ¼1:0527�0:0050. Using

a logarithmic expansion solution of the renormalization
group equation for a we find �MS ¼ 419þ222

�168 MeV. We

have used the MS definition for the asymptotic scale, and
the asymptotic scale of R� can be taken to be the same for
any�. The effective scales are found to beQ1 ¼ 1:3Q,Q2 ¼
1:2Q, Q3 � 5:3Q. The values are independent of the initial
renormalization scale up to some residual dependence com-
ing from the truncated � function, which is less than the
quoted accuracy on the numbers. This is illustrated in Fig. 1.
ForQ3 we have taken the LO value, which is sufficient to get
the conformal series at four loops. Its higher order value has
artificial strong residual renormalization-scale dependence
due to the large numerical value of�3 in QCDwith five act-
ive flavors. These final scales determine the effective number
of quark flavors at each order of perturbation theory [16].

50 100 150 0 GeV
1.046

1.048

1.050

1.052

1.054

1.056

1.058

1.060

3

11
Re e h Q s 31.6 GeV

FIG. 1 (color online). The final PMC result for Reþe�!h as a
function of the initial renormalization scale �0 (solid blue line),
demonstrating the initial scale invariance of the final prediction,
up to strongly suppressed residual dependence. The shaded
region is the experimental bounds with the central value given
by the thin dashed line. For comparison we also show the pQCD
prediction before PMC scale setting (thick dashed red line) fixed
to the experimental value for �0 ¼ Q. The result is very sensi-
tive to �0, and thus it severely violates renormalization group
properties.
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For completeness, we use our final result to predict the
strong coupling constant at the Z-boson mass scale in five
flavor massless QCD:

�sðMZÞ ¼ 0:132þ0:010
�0:011: (16)

The error on this result is a reflection of the experimental

uncertainty on Reþe�!h
exp , which cannot be eliminated. This

value is somewhat larger than the present world average
�sðMZÞ ¼ 0:1184� 0:0007, which is a global fit of all
types of experiments. However, it is consistent with the
values obtained from eþe� colliders, i.e., �sðMZÞ ¼
0:13� 0:005� 0:03 by the CLEO Collaboration [17]
and �sðMZÞ ¼ 0:1224� 0:0039 from the jet shape analy-
sis [18]. Moreover, in computing �sðMZÞ we have
assumed massless quarks. The estimate will decrease
when taking threshold effects properly into account as
shown in [19].

We can apply our result to Abelian QED, where Reþe�!h

can be seen as the imaginary part of the QED four loop
1PI vacuum polarization diagram by the optical theorem,
and find in this case nearly complete renormalization-scale
independence of all three scales to the NNNLO due to the
small value of the coupling constant. Numerically, we get
for three (lepton) flavors:

1

3
Reþe�!‘
QED ðQÞ ¼ 1þ 0:24�eðQ1Þ � 0:08�eðQ2Þ2

� 0:13�eðQ3Þ3 þ 0:05�eðQ4Þ4; (17)

where �e ¼ e2=4� and fQ1

Q ; Q2

Q ; Q3

Q g ¼ f1:1; 0:6; 0:5g.
In this Letter we have shown that a generalization of

the conventionalMS scheme is illuminating. It enables one
to determine the general (and degenerate) pattern of non-
conformal f�ig terms and to systematically determine the
argument of the running coupling order by order in pQCD,
in a way which is readily automatized. The resummed
series matches the conformal series, in which no factorially
divergent n!�n�n

s ‘‘renormalon’’ series appear and which
is free of any scheme and scale ambiguities. This is the
final expression one should use for physical predictions.
The method can be applied to processes with multiple
physical scales and is consistent with QED scale setting
in the limit NC ! 0. The new method satisfies all of the
principles of the renormalization group, including the prin-
ciple of maximum conformality, and it eliminates an un-
necessary source of systematic error.
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