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Decomposing unitaries into a sequence of elementary operations is at the core of quantum computing.

Information theoretic arguments show that approximating a random unitary with precision " requires

�ð logð1="ÞÞ gates. Prior to our work, the state of the art in approximating a single qubit unitary included

the Solovay-Kitaev algorithm that requires Oðlog3þ�ð1="ÞÞ gates and does not use ancillae and the phase

kickback approach that requires Oðlog2ð1="Þ loglogð1="ÞÞ gates but uses Oðlog2ð1="ÞÞ ancillae. Both

algorithms feature upper bounds that are far from the information theoretic lower bound. In this Letter, we

report an algorithm that saturates the lower bound, and as such it guarantees asymptotic optimality. In

particular, we present an algorithm for building a circuit that approximates single qubit unitaries with

precision " using Oð logð1="ÞÞ Clifford and T gates and employing up to two ancillary qubits. We connect

the unitary approximation problem to the problem of constructing solutions corresponding to Lagrange’s

four-square theorem, and thereby develop an algorithm for computing an approximating circuit using an

average of Oðlog2ð1="Þ loglogð1="ÞÞ operations with integers.
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Introduction.—The circuit-based model of quantum
computation requires the ability to accurately implement
quantum operations, specified by unitary matrices. These
unitary operations are implemented in practice via classical
control protocols that must be designed to yield the desired
quantum mechanical evolution of the system and opti-
mized to achieve efficient control. Since quantum errors
and decoherence appear to be unavoidable [1], fault toler-
ance must be employed to give any hope of scaling quan-
tum computational devices to a point where they can
outperform classical devices. Fortunately, quantum fault
tolerance protocols allow only moderate overhead on the
amount of physical resources required to accomplish the
desired scaling [1,2]. However, there is a downside—
the transformations that may be implemented in such
fault-tolerant protocols are limited to circuits over very
specific gate libraries. In particular, quantum circuits based
on the Clifford and T gates naturally arose in this context.

The Clifford gates often allow efficient implementation
on the physical level [2,3], and the T gate is required to
accomplish quantum computations beyond those simulable
classically [3], and thus to use quantum mechanics to its
full computational advantage. Fault-tolerant implementa-
tions of the T gate have been well studied in the relevant
literature [2,3]. As an important point, independently of the
details of the quantum information processing proposal
used or the control protocol, Clifford and T circuits arose
as one of the most widely accepted solutions dictated by
the requirements of fault tolerance.

The efficient approximation of a unitary evolution using
a discrete universal gate set is crucial for building a
scalable quantum computing device. Understanding the

minimum possible size of approximating circuits is both
a fundamental question in quantum information theory and
also a critical question for harnessing the power of quan-
tum information for computing in practice. The efficiency
of constructive solutions will play a significant role in
determining the point at which available quantum comput-
ing resources will outperform existing classical computers.
We show that the fundamental lower bounds on gate com-
plexity for approximating an arbitrary unitary operation on
a quantum fault-tolerant processor may be achieved with
efficient, constructive algorithms.
Barenco et al. [4] showed that any unitary may be

implemented by a circuit with CNOT and single qubit gates,
effectively reducing the problem to that of the single
qubit unitary synthesis or approximation. In this Letter,
we report a constructive algorithm to saturate the
information-theoretic lower bound on the number of gates
required to approximate an arbitrary single qubit unitary to
precision ", using an additional resource in the form of two
ancillae initialized to a simple state j0i. The significance of
the improvement provided by our approach is best seen
when, for a fixed precision ", all of the approximating
circuit parameters such as depth, the number of gates,
and total number of qubits used are combined into one
aggregate figure, such as, e.g., the product of the three
of these parameters. To further illustrate, Oðdepth�
gate count� qubit susedÞ is Oðlog7:94ð1="ÞÞ for the
standard version of the Solovay-Kitaev algorithm [5] and
Oðklog2ð1="Þ log½logð1="Þ� þ log4ð1="Þlog3½logð1="Þ�Þ
for implementing k single qubit gates by phase kickback
algorithm [6], whereas it is only Oðlog2ð1="ÞÞ for our
algorithm reported in this Letter. We next discuss the
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existing approaches to the solution of the single qubit
synthesis problem as well as how our approach improves
the state of the art.

Background.—Technically, the problem of the single
qubit circuit synthesis is formulated as follows: given a
discrete universal gate set or ‘‘library,’’ find a sequence of
gates in it that approximates a given unitary to precision ".
Parameter " determines the complexity of the resulting
approximation.

Computing an approximation using the standard version
of the Solovay-Kitaev algorithm [5] takes Oðlog2:71ð1="ÞÞ
steps on a classical computer, and the number of gates in
the resulting quantum circuit is Oðlog3:97ð1="ÞÞ. The best
known upper bound on the circuit size resulting from
the application of the Solovay-Kitaev algorithm is
Oðlog3þ�ð1="ÞÞ, where � can be chosen arbitrary small
[6]. Our gate count is Oð logð1="ÞÞ; however, our circuits
employ two ancillae.

From the other side, Harrow et al. [7] show an
�ð logð1="ÞÞ lower bound on the number of gates in the
approximating circuit. A certain library of quantum gates
that allows approximating a single qubit unitary to preci-
sion " with a circuit containing at most Oð logð1="ÞÞ gates
is also reported in [7]. However, the authors did not provide
an efficient algorithm to construct a circuit meeting the
lower bound in the number of gates. Also, the gate set used,

ðI þ 2ifX; Y; ZgÞ= ffiffiffi
5

p
, is not considered to bewell suited for

a fault-tolerant implementation, in contrast to the Clifford
and T library. To the best of our knowledge, constructive
saturation of the logarithmic lower bound in the Clifford
and T library has not been shown yet; however, numerical
evidence supports the theory that this is the case [8] (based
on an exponential-time breadth first search algorithm).

Allowing additional resources helps to achieve interest-
ing improvements over the Solovay-Kitaev algorithm. For
example, using a special resource state j�i onOð logð1="ÞÞ
qubits allows us to achieve the desired accuracy of ap-
proximation by a depth Oð log½logð1="Þ�Þ circuit contain-
ing Oð logð1="ÞÞ gates [6], also known as the phase
kickback algorithm. However, the resource state prepara-
tion requires Oðlog2ð1="ÞÞ ancillary qubits and a circuit
of depth Oðlog2½logð1="Þ�Þ containing Oðlog2ð1="Þ�
loglogð1="ÞÞ gates. Furthermore, exact preparation of the
resource state j�i is not possible using gates from the
Clifford and T library and qubits initialized to the state
j0i [9,10]. In comparison, in our work, we employ only two
ancillae prepared in the simple state j0i, which results in
achieving the approximating accuracy of " using a circuit
with Oð logð1="ÞÞ gates. Also, our circuit is asymptotically
optimal.

One other recent approach uses resource states [11] and
probabilistic circuits with classical feedback. The circuit
itself, excluding state preparation, requires on average a
constant number of operations and a constant number of
ancilla qubits. The method requires precomputed ancillae

in the states RZð2n�ÞHj0i to implement RZð2m�Þ. The
other recently developed method to approximate RZð�Þ
that also relies on special resource states, measurements,
and classical feedback is presented in [12]. Our algorithm
does not rely on the measurements and classical feedback,
and our circuit is deterministic. More importantly, our
algorithm does not employ sophisticated ancilla states
that, in turn, may require approximation, as they may
not be possible to prepare exactly in the Clifford and T
library [9,10].
In our previous work [9], we showed that any single

qubit unitary with entries uij in the ring Z½i; 1= ffiffiffi
2

p � can be

synthesized exactly using single qubit Clifford and T gates.
We presented an asymptotically optimal algorithm for
finding a circuit with the minimal number of Hadamard
and T gates and asymptotically minimal total number of
gates. More precisely, if the square of the norm of an
element of the single qubit unitary matrix, juijj2, can be

represented as ðaþ ffiffiffi
2

p
bÞ=2n, where a and b are integers

such that GCDða; bÞ is odd, the total number of gates
required to synthesize the unitary is in �ðnÞ. This work
opened the door for bypassing the Solovay-Kitaev algo-
rithm for fast circuit approximation of single qubit uni-
taries by efficiently approximating arbitrary unitaries with

unitaries over the ring Z½i; 1= ffiffiffi
2

p �. However, as of the time
of this (original) writing, no efficient ring roundoff
procedure was reported, and it remains an important open
problem.
Giles and Selinger [10] recently found an elegant way to

prove the conjecture formulated in [9] stating that multiple

qubit unitaries over the ring Z½i; 1= ffiffiffi
2

p �may be synthesized
exactly using the Clifford and T library. In this Letter,
we employ some of their results to show that, by adding
at most two ancilla qubits, we can achieve asymptotically
optimal approximation of the single qubit unitaries in the
Clifford and T library.
Main result.—We focus on the approximation of the

following operator:

�ðei�Þ: �j0i þ �j1i � �j0i þ �ei�j1i:
We note that any single qubit unitary can be decomposed in
terms of a constant number of Hadamard gates and �ðei�Þ
(see solution to Problem 8.1 in [6]). Therefore, the ability
to approximate �ðei�Þ implies the ability to approximate
any single qubit unitary.
There are two main steps in our algorithm. (1) Find a

circuit C consisting of Clifford and T gates such that the
result of applying C to j00i is close to ei�j00i. (2) Apply
circuit C controlled on the first qubit to perform a trans-
formation close to

�j000i þ �j100i � �j000i þ �ei�j100i:
It can be observed that the net effect of such trans-

formation may be described as the application of �ðei�Þ
to the first qubit. To accomplish the first step we
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approximate ei�j00i with a four-dimensional vector jvi
with entries in the ring Z½i; 1= ffiffiffi

2
p �. We then employ an

algorithm for multiple qubit exact synthesis to find a circuit
C that prepares jvi starting from j00i using at most one
ancilla qubit. It was shown in [13] that any circuit using
Clifford and T gates can be transformed into its exact
(meaning no further approximation is required) controlled
version with only a linear overhead in the number of gates,
and using at most one ancilla qubit in the state j0i that is
returned unchanged. Our analysis shows that, however, on
this step we do not need to use this additional ancilla. The
resulting total number of ancillae is thus at most two.

Approximating ei�j00i.—The key is the reduction of the
approximation problem to expressing an integer number as
a sum of four squares. In particular, we are looking for an
approximation of

ei�j00i ¼ ½cosð�Þ þ i sinð�Þ; 0; 0; 0�
by a unit vector

jvi :¼ 1

2k
ðb2k cosð�Þc þ ib2k sinð�Þc; 0; aþ ib; cþ idÞ;

where k 2 N; a, b, c, d 2 Z. Without loss of generality we
can assume that 0 � � � ð�=4Þ. The power k of the
denominator determines precision of our approximation
and complexity of the resulting circuit. As jvi must be a
unit vector, the remaining four parameters (a, b, c, and d)
should satisfy the integer equation:

a2 þ b2 þ c2 þ d2 ¼ 4k � b2k cosð�Þc2 � b2k sinð�Þc2:
Lagrange’s four-square theorem states that this equation

always has a solution. Furthermore, there exists an efficient
probabilistic algorithm for finding a solution to the
Diophantine equation. For the right-hand sideM it requires
on average Oðlog2ðMÞ loglogMÞ operations with integers
smaller than M. It is described in Theorem 2.2 in [14].
We get such a simple roundoff procedure and reduction to
such a simple Diophantine equation at the expense of using
two qubits instead of one.

Furthermore, in estimating the classical complexity of
the algorithm for finding the approximating circuit, we will
rely on an observation that

4k � b2k cosð�Þc2 � b2k sinð�Þc2 � 4� 2k þ const2Oð2kÞ:
The exact synthesis method for finding a circuit that

prepares jvi given j0i is based on the connection between
the form of the elements of vector jvi and the complexity
of the corresponding circuit. More precisely, the square of
the absolute value of each element of jvi can be written as

ðaþ ffiffiffi
2

p
bÞ= ffiffiffi

2
p

n, where n is minimized across all equiva-
lent representations. The maximum of such n over all
elements of jvi defines the complexity of the state prepa-
ration. In particular, it was shown in [10] that it is always
possible to reduce maximal n or the number of elements of
jviwith maximal n using finitely many two-level unitaries.

Furthermore, each of those two-level unitaries can be
implemented exactly using finitely many Clifford and T
gates. In summary, one can always find a sequence of
Clifford and T gates reducing maximal n to 0. This
sequence defines the circuit synthesizing the desired state
jvi given j0i.
Precision and complexity analysis.—Let us introduce

� ¼ ðb2k cosð�Þc þ ib2k sinð�ÞcÞ=2k and express jvi as
jvi ¼ �j00i þ j1i � jgi. The application of the circuit C
controlled on the first qubit will transform ð�j0i þ �j1iÞ �
j00i into �j000i þ ��j100i þ �j01i � jgi. The distance
of the result to the desired state �j000i þ �ei�j100i is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�ðei� � �Þj2 þ j�j2kjgik2

q
:

By the choice of �, we have j�� ei�j � ð ffiffiffi
2

p
=2kÞ; there-

fore, the first term in the sum above is in Oð1=22kÞ. The
norm squared of jgi equals 1� j�j2. The complex number
� approximates ei�, and the distance of its absolute value
to identity can be estimated using the triangle inequality,
jj�j�jei�jj� j��ei�j. Therefore, 1� j�j2 is inOð1=2kÞ.
In summary, the distance to the approximation is in
Oð1=20:5kÞ.
The same estimate is true if we consider the circuit C as

a part of a larger system. In this case we should start
with the state ð�j�0i � j0i þ �j�1i � j1iÞ � j00i.
Similar analysis shows that the distance to approximation
remains Oð1=20:5kÞ.
As shown in [10], it is possible to find a circuit that

prepares jvi usingOðkÞ Clifford and T gates [[10], Lemma
20 (Column lemma)]. The classical complexity of con-
structing a quantum circuit implementing jvi is in OðkÞ.
In the controlled version of this circuit, the number of gates
remains OðkÞ ([13], Theorem 1). In summary, we need
Oð logð1="ÞÞ gates to achieve precision ". The complexity
of the classical algorithm for constructing the entire
approximating circuit is thus dominated by the complexity
of finding a solution to the Diophantine equation, which is
in Oðlog2ð1="Þ loglogð1="ÞÞ, counting operations over
integers of size Oðlogð1="Þ.
How many ancillae are needed?—A straightforward

calculation shows that the number of ancillae used is three.
However, we can get around using only two ancillae. To
understand how, we need to go into the details of the proof
of Lemma 20 (Column lemma) from [10]. It shows how to
find a sequence of two-level unitaries of type iX,
T�mðiHÞTm, and W [10], and length OðkÞ that allows us
to prepare a state with the denominator 2k. A controlled
version of the two-level unitary is again a two-level unitary.
In [10], Lemma 24, it was also shown that any such unitary
required can be implemented using no extra ancillae.
Therefore, the controlled version of the circuit C will not
use any additional ancilla and we need only two of them in
total.
Lower bound on the number of gates when ancillae are

allowed.—We use a volume argument to show the lower
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bound. Suppose we can approximate any element of the
group ofN byN unitary matrices UðNÞwith precision " by
a circuit over gate library G that uses at most k gates. This
implies that we can cover UðNÞ with jGjk sets, where each
set contains such unitaries from UðNÞ that can be approxi-
mated by some particular circuit of length k. By showing
that the Haar measure of each of the mentioned sets is in

Oð"N2Þ, and using the notion that the measure of the set
union is smaller than the sum of the measures of the
individual sets, we obtain the required bound on k.

The idea is similar to the derivation of the lower bound
for the case when no ancillae are allowed, originally found
in [7]. The difference is that we have to deal with the
circuits acting on nþm qubits and consider a more com-
plicated notion of approximation, in contrast to the usual
distance between two unitaries. The precise statement of
the lower bound is achieved by the following lemma.

Lemma 1: Let G be a universal library, and let MV be a
set of unitaries, that simulate a unitary V acting on n qubits,
using m ancillary qubits:

MV :¼ fU 2 Uð2mþnÞjUðj0i � j�iÞ ¼ j0i � ðVj�iÞg:

Then, for any " there always exists a unitary Vð"Þ such that
the number of gates from G needed to construct a unitary
within the distance " to MVð"Þ is in �ð logð1="ÞÞ.

The proof of this lemma may be found in the
Supplemental Material [15].

Conclusions and future work.—Our work answers a
fundamental and important question for both theoretical
and practical quantum information science: up to constant
factors, the fundamental limits for approximating single
qubit unitaries to a given precision may be attained by
efficient algorithms.

Our work also opens up several other interesting and
important questions (in no specific order): What are the
constants hidden behind the big-O notation in our
approach, and can they be optimized (while further opti-
mizations are only possible up to a multiplicative factor
they are, nevertheless, important for practical purposes)?
What are the possible trade-offs between adding or reduc-
ing ancillae and the gate count? Is it possible to use other
efficiently solvable Diophantine equations to discover
approximations of other types of gates? Lastly, does
there exist an efficient algorithm to round off single-qubit
unitaries to those single qubit unitaries over the ring

Z½i; 1= ffiffiffi
2

p � and avoid the need for ancillary qubits
altogether?

Further development of the ideas reported in this Letter
has already led to some interesting results. An efficient
algorithm for approximating a unitary by Clifford and T
circuits without using ancillae and leading to shorter
sequences may be found in [16]. Reference [17] allows
us to find even shorter approximating circuits at the ex-
pense of a more intensive (classical) computation. Finally,

[18] shows how to use similar ideas to efficiently approxi-

mate unitaries over the gate set ðI þ 2ifX; Y; ZgÞ= ffiffiffi
5

p
.
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