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Because of its geometric nature, holonomic quantum computation is fault tolerant against certain types

of control errors. Although proposed more than a decade ago, the experimental realization of holonomic

quantum computation is still an open challenge. In this Letter, we report the first experimental

demonstration of nonadiabatic holonomic quantum computation in a liquid NMR quantum information

processor. Two noncommuting one-qubit holonomic gates, rotations about x and z axes, and the two-qubit

holonomic CNOT gate are realized by evolving the work qubits and an ancillary qubit nonadiabatically.

The successful realizations of these universal elementary gates in nonadiabatic holonomic quantum

computation demonstrates the experimental feasibility of this quantum computing paradigm.
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Introduction.—Holonomic quantum computation
(HQC) was first proposed by Zanardi and Rasetti [1]. In
their original work, the twisting of eigenspaces of an
adiabatically varying Hamiltonian was used to manipulate
quantum states in a robust manner. Because of the geomet-
ric nature, HQC is robust against certain types of control
errors. Since control errors are one main obstacle to the
realization of quantum computation, HQC has become one
promising quantum computation paradigm and has
attracted increasing interests recently [2–18].

Early HQC is based on adiabatic evolution, in which
states are encoded in degenerate eigenstates of a
Hamiltonian, and gates are accomplished by adiabatically
varying the Hamiltonian along a loop in the parameter
space. Because of the adiabatic requirement, a long run
time is naturally required in the parametric control in
adiabatic HQC (AHQC). This not only limits the gate
speed, but also exposes the system to an environment for
a long time, and consequently leads to decoherence and
reduces the efficiency of AHQC. To overcome these draw-
backs in AHQC, nonadiabatic HQC (NHQC) has been
pursued, and several NHQC protocols have been proposed
[17,18]. In NHQC, the long run-time requirement is
avoided, while still retaining all the robust advantages,
making NHQC a very appealing quantum computing
paradigm.

In this Letter, we report the first experimental realization
of NHQC using a liquid NMR quantum information pro-
cessor. The NHQC scheme we realize is based on a variant
of the recently proposed NHQC scheme in Ref. [18]. In our
modified NHQC scheme, decoherence-free subspace is not
used and nonadiabatic holonomic evolution is achieved by
nonadiabatically evolving the work qubits and an ancillary
qubit. To experimentally realize universal quantum com-
putation, nonadiabatic one-qubit holonomic rotation gates
about x and z axes, and the nonadiabatic two-qubit holo-
nomic CNOT gate are successfully implemented using a

three-qubit NMR quantum information processor. These
results demonstrate the experimental feasibility of NHQC.
Theoretical protocol.—We first briefly review the holo-

nomic conditions. Consider an N-dimensional quantum
system with its Hamiltonian HðtÞ. Assume the state of
the system is initially in a M-dimensional subspace Sð0Þ
spanned by a set of orthonormal basis vectors fj�kð0ÞigMk¼1.

It has been proven that [17,18] the evolution operator is a
holonomic matrix acting on Sð0Þ if j�kðtÞi satisfy the
following conditions:

ðiÞ XM
k¼1

j�kð�Þih�kð�Þj ¼
XM
k¼1

j�kð0Þih�kð0Þj; (1)

ðiiÞ h�kðtÞjHðtÞj�lðtÞi ¼ 0; k; l ¼ 1; . . . ;M; (2)

where � is the evolution period and j�kðtÞi ¼
T exp½�i

R
t
0 Hðt1Þdt1�j�kð0Þi, with T being time ordering.

Now we construct the universal set of NHQC gates. For
the nonadiabatic one-qubit holonomic rotation gates, a
two-qubit system is used. We choose the logical qubit
states as j0iL ¼ j10i, j1iL ¼ j11i. By such a design, all
the information of the logical qubit is encoded in the work
qubit (the second qubit), and the first qubit acts as an
ancillary qubit. We design two types of Hamiltonians,
H1ð�1Þ and H2ð�2Þ, to respectively realize two noncom-
muting nonadiabatic one-qubit gates,

H1ð�1Þ ¼ 1

2
½a1ðX1X2 þ Y1Y2Þ þ b1ðX1Y2 � Y1X2Þ

� a1X1ðI2 � Z2Þ � b1Y1ðI2 � Z2Þ�; (3)

H2ð�2Þ ¼ 1

2
½a2ðY1X2 � X1Y2Þ � b2X1ðI2 � Z2Þ�; (4)

where a1 ¼ J1 cosð�1=2Þ, b1 ¼ J1 sinð�1=2Þ, a2 ¼
J2 sinð�2=2Þ, b2 ¼ J2 cosð�2=2Þ, I is the one-qubit iden-
tity matrix, and X, Y, and Z are Pauli matrices. In the basis
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fj00i; j01i; j10i; j11ig, the evolution operators U�1

1 ð�1Þ and
U�2

2 ð�2Þ generated by H1ð�1Þ and H2ð�2Þ, respectively,
read

U�1

1 ð�1Þ ¼

1 0 0 0

0 �1 0 0

0 0 0 e�i�1

0 0 ei�1 0

0
BBBBB@

1
CCCCCA; (5)

U�2

2 ð�2Þ ¼

1 0 0 0

0 �1 0 0

0 0 cos�2 i sin�2

0 0 �i sin�2 � cos�2

0
BBBBB@

1
CCCCCA; (6)

where J1�1 ¼ �=
ffiffiffi
2

p
and J2�2 ¼ �. According to

Eqs. (3)–(6), it is easy to prove that both conditions
(i) and (ii) are satisfied if the state of the two-qubit system
is initially in the logical subspace SL1 ¼ fj0iL; j1iLg. So
U�1

1 ð�1Þ and U�2

2 ð�2Þ are holonomic matrices acting on

SL1 . In the basis fj0iL; j1iLg, U�1

1 ð�1Þ and U�2

2 ð�2Þ are,
respectively, equivalent to

Uxzð�1Þ ¼
0 e�i�1

ei�1 0

 !
; (7)

Uzxð�2Þ ¼
cos�2 i sin�2

�i sin�2 � cos�2

 !
: (8)

Then the one-qubit holonomic rotation gates about x and z
axes acting on the space SL1 can be constructed by using
Uxz and Uzx,

RL
z ð�Þ ¼ Uxzð0ÞUxz

�
��

2

�
! U0

1ð�1ÞU�ð�=2Þ
1 ð�1Þ; (9)

RL
x ð�Þ ¼ Uzxð0ÞUzx

�
��

2

�
! U0

2ð�2ÞU�ð�=2Þ
2 ð�2Þ: (10)

From the above two gates, an arbitrary one-qubit NHQC
operation can be built.

The nontrivial two-qubit NHQC gate we realize is the
nonadiabatic holonomic CNOT gate. A three-qubit system is
used to implement this gate. j100i, j101i, j110i, and j111i
are encoded as j00iL, j01iL, j10iL, and j11iL. We see that
all the information of the logical two-qubit state is encoded
in the two work qubits (the second qubit and the third
qubit), and the first qubit acts as an ancillary qubit. The
Hamiltonian H3 for realizing the CNOT gate can be
expressed as

H3 ¼ J3
4
½X1ðI2 � Z2ÞX3 þ Y1ðI2 � Z2ÞY3

� X1ðI2 � Z2ÞðI3 � Z3Þ�: (11)

Letting the evolution time satisfy the condition

J3�3 ¼ �=
ffiffiffi
2

p
, the evolution operator in the basis

fj000i; j001i; j010i; j011ij100i; j101i; j110i; j111ig reads
U3ð�3Þ ¼ Diag½1; 1; 1;�1; 1; 1; X�: (12)

According to Eqs. (11) and (12), we can prove that
both conditions (i) and (ii) are satisfied if the state of the
three-qubit system is initially in the logical subspace
SL2 ¼ fj00iL; j01iL; j10iL; j11iLg. So U3ð�3Þ is a holonomic
matrix acting on SL2 . In the basis fj00iL; j01iL; j10iL;
j11iLg, U3ð�3Þ is equivalent to the nonadiabatic holonomic
CNOT gate.

As the Hamiltonians H1ð�1Þ, H2ð�2Þ, and H3 are time
independent, their holonomic evolution operators can be
respectively written as

U�1

1 ð�1Þ ¼ �N1

l¼1U
�1

1 ð�t1Þ; (13)

U�2

2 ð�2Þ ¼ �N2

l¼1U
�2

2 ð�t2Þ; (14)

U3ð�3Þ ¼ �N3

l¼1U3ð�t3Þ; (15)

where �ti (i 2 f1; 2; 3g) is small time interval and its value
is �i=Ni, with Ni being the number of the time steps of the
holonomic evolution. By using a modification of the
Trotter formula which is correct up to ð�tÞ2 [19], the short
time evolutions respectively read

U�1

1 ð�t1Þ ¼ e�i�t1H1ð�1Þ � T�1

1 ð�t1Þ
¼ eið�t1=2Þ�ðb1=2ÞY1ðI2�Z2Þeið�t1=2Þ�ða1=2ÞX1ðI2�Z2Þe�ið�t1=2Þ�ðb1=2ÞðX1Y2�Y1X2Þe�i�t1�ða1=2ÞðX1X2þY1Y2Þ

� e�ið�t1=2Þ�ðb1=2ÞðX1Y2�Y1X2Þeið�t1=2Þ�ða1=2ÞX1ðI2�Z2Þeið�t1=2Þ�ðb1=2ÞY1ðI2�Z2Þ; (16)

U�2

2 ð�t2Þ ¼ e�i�t2H2ð�2Þ � T�2

2 ð�t2Þ ¼ eið�t2=2Þ�ðb2=2ÞX1ðI2�Z2Þe�i�t2�ða2=2ÞðY1X2�X1Y2Þeið�t2=2Þ�ðb2=2ÞX1ðI2�Z2Þ; (17)

U3ð�t3Þ ¼ e�i�t3H3 � T3ð�t3Þ
¼ eið�t3=2Þ�ðJ3=4ÞX1ðI2�Z2ÞðI3�Z3Þe�i�t3�ðJ3=4ÞX1ðI2�Z2ÞX3e�i�t3�ðJ3=4ÞY1ðI2�Z2ÞY3eið�t3=2Þ�ðJ3=4ÞX1ðI2�Z2ÞðI3�Z3Þ: (18)
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Here T�1

1 ð�t1Þ, T�2

2 ð�t2Þ, and T3ð�t3Þ can be realized
by a combination of radio-frequency pulses and evolutions
of the J-coupling constants between the neighboring
qubits in the NMR technique [20–26]. According to
Eqs. (13)–(18), the nonadiabatic holonomic gates RL

z ð�Þ,
RL
x ð�Þ, and UL

cnot can be realized by

RL
z ð�Þ ! �N1

l¼1T
0
1ð�t1Þ�N1

l¼1T
�ð�=2Þ
1 ð�t1Þ; (19)

RL
x ð�Þ ! U0

2ð�2Þ�N2

l¼1T
�ð�=2Þ
2 ð�t2Þ; (20)

UL
cnot ! �N3

l¼1T3ð�t3Þ: (21)

Notably, in Eq. (20), U0
2ð�2Þ can be implemented

directly with no approximations; thus, it reads U0
2ð�2Þ ¼

eið�2J2=2ÞðX1I2�X1Z2Þ.
Experimental procedures and results.—Figures 1(a) and

1(b), respectively, illustrate the implementations of the
nonadiabatic one-qubit and two-qubit holonomic gates.
The diethyl-fluoromalonate dissolved in d6 acetone is
used as the NMR quantum processor. 13C, 19F, and 1H
nuclear spins respectively act as the ancillary qubit and the
two work qubits. Both in the one-qubit and two-qubit
cases, the ancillary qubit stays in state j1ih1j before and
after the nonadiabatic holonomic evolutions. The input
states (output states) of the work qubits are denoted as
�A
in (�A

out) and �B
in (�B

out) for the one-qubit and two-qubit

cases, respectively.
We here realize the following four one-qubit NHQC

gates: RL
z ð�=2Þ, RL

z ð�Þ, RL
x ð�=2Þ, RL

x ð�Þ, and the NHQC
CNOT gateUL

cnot. In order to demonstrate we can implement

one-qubit NHQC gates on both 19F and 1H, RL
z ð�=2Þ and

RL
x ð�=2Þ are implemented on 19F and RL

z ð�Þ and RL
x ð�Þ are

implemented on 1H. In our experiments, the number of
iterations is chosen to be N1 ¼ 3, N2 ¼ 2, and N3 ¼ 2. We
prepare the initial states using the cat-state method
[27–29]. For the one-qubit gates, we prepare the work qubit
in �A

in and the ancillary qubit in j1ih1j. Without loss of

generality, the spectator work qubit is prepared in j0ih0j.
Specifically, the NMR processor is initialized in the pseu-
dopure states j1ih1j � �A

in � j0ih0j [for RL
z ð�=2Þ and

RL
x ð�=2Þ] or j1ih1j � j0ih0j � �A

in [for RL
z ð�Þ and RL

x ð�Þ].
For the CNOT gate, the ancillary qubit is also prepared
in j1ih1j and the whole state of the NMR processor is
j1ih1j � �B

in. In terms of the deviation matrices [30], the

input states �A
in and �B

in are prepared in each of the follow-

ing sets:

�A
in 2 fX; Y; Zg; (22)

�B
in 2 fIX; IY; IZ; XI; XX; XY; XZ; YI;

YX; YY; YZ; ZI; ZX; ZY; ZZg: (23)

The output states �A
out and �

B
out are determined by quantum

state tomography [31]. To measure the sameness of the
theoretical output state �th and the experimental
output state �out, the attenuated and unattenuated state
fidelities [32,33], which are respectively defined as

Trð�out�thÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trð�th�thÞTrð�in�inÞ

p
and Trð�out�thÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Trð�out�outÞTrð�th�thÞ
p

, are used. The attenuated fidelity
takes into account the signal loss, while the unattenuated
fidelity ignores certain errors due to the signal loss and
quantifies how similar in direction �out and �th are [32,33].
The average experimental attenuated fidelities are 60.7%,
61.8%, 86.1%, 77.7%, and 47.9% for the output states of
RL
z ð�=2Þ, RL

z ð�Þ, RL
x ð�=2Þ, RL

x ð�Þ, and UL
cnot, respectively,

while their average experimental unattenuated fidelities are
97.6%, 97.3%, 97.9%, 95.7%, and 93.12%, respectively.
These numbers are in line with the results of other experi-
ments done using diethyl-fluoromalonate [34]. The differ-
ences between the attenuated and unattenuated fidelities
are consistent with the signal loss rates measured in our
experiments (see Supplemental Material [35]). Figure 2
shows the unattenuated output state fidelities in our experi-
ments. Figure 3 shows example NMR experimental spec-
tra. Figure 3(a) [Fig. 3(d)] is the 13C spectrum of the input
state �A

in ¼ X for 1H (19F), with 19F (1H) in state j0ih0j.
Figures 3(b), 3(c), 3(e), and 3(f) show the 13C spectra of
the output states �A

out, after implementing RL
x ð�Þ, RL

z ð�Þ,
RL
x ð�=2Þ, and RL

z ð�=2Þ to the input states �A
in ¼ X, respec-

tively. Figures 3(g) and 3(h) show the spectra of �B
in ¼ IX

and �B
out after applying UL

cnot.
Quantum process tomography (QPT) [36] is used to

quantitatively describe the implementation of the NHQC
gates. According to QPT, each quantum process is charac-
terized by a �matrix. For a given input state �in, the output

state is expressed as �out ¼ �k;l�klek�ine
y
l , where ek

(a)

(b)

FIG. 1 (color online). Circuits for the NHQC gates. (a) The
one-qubit NHQC gates. (b) The two-qubit NHQC gate. In both
(a) and (b), 13C acts as an ancillary qubit and stays in state j1ih1j
before and after the nonadiabatic holonomic evolutions. 19F and
1H nuclear spins are the two work qubits.
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belongs to an operation basis set. The elements of the
operator basis set for the one-qubit and two-qubit cases
can be, respectively, chosen as

ek 2 fI; X;�iY; Zg; k ¼ 1; :::; 4; (24)

ek 2 fII; IX;�iIY; IZ;XI;XX;�iXY;XZ;�iYI;�iYX;

� YY;�iYZ;ZI;ZX;�iZY;ZZg; k¼ 1; . . . ;16: (25)

The QPT � matrix is calculated using the output states
via the technique described in Ref. [19]. The experimental
� for one-qubit and two-qubit gates is shown in
Figs. 4 and 5, respectively. We use � fidelities to evaluate
the performance of NHQC gates. The attenuated � fidel-

ities jTrð�exp�
y
thÞj [33], which take into account the signal

loss, are 70.5%, 71.3%, 89.5%, 83.3%, and 51.2% for the
RL
z ð�=2Þ, RL

z ð�Þ, RL
x ð�=2Þ, RL

x ð�Þ, and UL
cnot gates, respec-

tively. The deviations between �th and �exp are mainly

FIG. 3 (color online). Experimental spectra of 13C. (a) and (d)
are, respectively, the spectra obtained by observing the states
with 1H and 19F in �A

in ¼ X, with no holonomic operations. (b),

(c), (e), and (f) are the spectra of �A
out, starting with the initial

states �A
in ¼ X, and applying the holonomic operations RL

x ð�Þ,
RL
z ð�Þ, RL

x ð�=2Þ, and RL
z ð�=2Þ, respectively. RL

x ð�Þ and RL
z ð�Þ

are implemented on 1H; RL
x ð�=2Þ and RL

z ð�=2Þ are implemented
on 19F. (g) is the spectrum of the initial state �B

in ¼ IX. (h) is the
spectrum of �B

out after the holonomic operation UL
cnot with the

initial state �B
in ¼ IX. (a), (d), and (g) are used as reference

spectra, to which (b), (c), (e), (f), and (h) are normalized. All the
observation is realized by transferring the states of the work
qubits to 13C and then observing 13C.

FIG. 4 (color online). The QPT � matrices of one-qubit holo-
nomic gates RL

z ð�=2Þ, RL
z ð�Þ, RL

x ð�=2Þ, and RL
x ð�Þ. The (a) and

(c) columns are the real parts and imaginary parts of the
theoretical � matrices, respectively. The (b) and (d) columns
are the real parts and imaginary parts of the experimental �
matrices, respectively. The numbers in the x and y axes refer to
the operators in the operator basis set fI; X;�iY; Zg.

FIG. 2 (color online). The experimental unattenuated output
state fidelities for the NHQC gates. In (a), (b), (c), and (d) are the
fidelities of �A

out for RL
z ð�=2Þ, RL

z ð�Þ, RL
x ð�=2Þ, and RL

x ð�Þ
respectively, applied to input states X, Y, and Z. RL

z ð�=2Þ and
RL
x ð�=2Þ are implemented on 19F; RL

z ð�Þ and RL
x ð�Þ are imple-

mented on 1H. In (e) are the fidelities of �B
out for U

L
cnot, applied to

15 different input states listed in Eq. (23). The average fidelities
(the red solid horizontal lines) are 97.6%, 97.3%, 97.9%, 95.7%,
and 93.12% in (a)—(e), respectively.

FIG. 5 (color online). The QPT � matrices of UL
cnot. (a) and (c)

are the real part and imaginary part of the theoretical � matrix,
respectively. (b) and (d) are the real part and imaginary part of
the experimental � matrix, respectively. The numbers 1 to 16 in
the x and y axes refer to the operators in the operator basis set
fII; IX;�iIY; IZ; XI; XX;�iXY; XZ;�iYI;�iYX;�YY;�iYZ;
ZI; ZX;�iZY; ZZg.
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caused by an overall loss of signal. To see the sameness of
theoretical and experimental quantum processes when
ignoring certain errors due to signal loss, we use the

unattenuated � fidelity defined as jTrð�exp�
y
thÞj=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Trð�exp�
y
expÞTrð�th�

y
thÞ

q
[33,37,38]. The unattenuated ex-

perimental � fidelities of the gates RL
z ð�=2Þ, RL

z ð�Þ,
RL
x ð�=2Þ, RL

x ð�Þ, and UL
cnot are 95.9%, 95.9%, 98.1%,

96.3%, and 91.43%, respectively. It is interesting to note
that the Trotter approximations in Eqs. (16)–(18) give very
good approximations to the exact evolution and the theo-
retical � fidelities are 99.2%, 98.6%, 99.2%, 97.4%, and
98.7% for RL

z ð�=2Þ, RL
z ð�Þ, RL

x ð�=2Þ, RL
x ð�Þ, and UL

cnot,
respectively.

Summary.—As a proof of principle, we experimentally
implemented NHQC via a NMR quantum information
processor using a variant version of the scheme proposed
in Ref. [18]. In our experiments, one-qubit nonadiabatic
holonomic gates and two-qubit holonomic CNOT gates,
which compose a universal set of NHQC gates, are imple-
mented by using an ancillary qubit which provides the
additional dimension needed in the holonomic evolution.
This is the first experimental demonstration of NHQC,
which is a step toward fault-tolerant quantum computing.
The successful realizations of these universal elementary
gates in NHQC demonstrate the feasibility of implement-
ing NHQC using present experimental techniques.
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