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We propose that ordinary semiconductors with large spin-orbit coupling, such as GaAs, can host stable,

robust, and tunable topological states in the presence of quantum confinement and superimposed

potentials with hexagonal symmetry. We show that the electronic gaps which support chiral spin edge

states can be as large as the electronic bandwidth in the heterostructure miniband. The existing

lithographic technology can produce a topological insulator operating at a temperature of 10–100 K.

Improvement of lithographic techniques will open the way to a tunable room temperature topological

insulator.
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A topological insulator (TI) is a fascinating state of
matter which presents unusual physical properties such
as a quantum spin Hall effect in two dimensions (2D),
spin-polarized chiral Dirac surface states in three dimen-
sions (3D), exotic magnetoelectric effects, and Majorana
fermions in the presence of superconductivity [1–3].
Although TIs have attracted a lot of attention, progress in
this area has been hindered by the absence of experimental
systems with robust electronic and structural properties.
Although these materials have been christened as ‘‘topo-
logically protected,’’ material issues associated with the
weak strength of the spin-orbit coupling (SOC), the small
size of the gaps, and the strong disorder (of the order of
the electronic bandwidth) present in most of the proposed
systems make the experimental realization of these amaz-
ing physical properties very difficult, if not unattainable.

One of the first theoretical predictions for such TI states
was made for graphene [4] in the early days of graphene
research [5]. Nevertheless, carbon is a light element with
weak intrinsic SOC (�10�2 eV). In addition, in flat gra-
phene, due to wave function orthogonality, the SOC for the
� bands is even weaker (�10�6 eV) and, therefore, essen-
tially unobservable. While deviations from flat sp2 to out
of plane sp3 bonds can lead to threefold enhancement of
the SOC [6], the atomic control over these deformations
is a major experimental challenge. Shortly after its initial
proposal, TI states where predicted to occur in HgTe
quantum wells [7], in 3D bulk solids of binary compounds
involving Bi [8], and in half-Heusler ternary compounds
[9]. Unfortunately, all these materials are very sensitive to
stoichiometry. Hence, the unavoidable presence of defects,
which are usually unitary scatterers and can act as donors
or acceptors, has a strong effect in the electronic structure.
One observes, for instance, large broadening of the spectral
lines for surface states in angle resolved photoemission and
doping of the bulk crystal ultimately transforming the TIs
into metals [10].

An idea to use semiconductors to produce a TI was put
forward in Ref. [11]. In particular, it was suggested to use
inverted InAs=GaSb quantum wells. The system was real-
ized experimentally with some indications for helical edge
modes [12]. In this Letter, we propose an alternative way to
produce robust, structurally stable, and tunable TI states in
ordinary semiconductors such as GaAs. The advantages of
these materials are that they have significant SOC, they can
be grown with extreme precision using molecular beam
epitaxy with large electronic mobilities, they can be tai-
lored into quantum wells with arbitrary thickness, and they
can be controlled by external gates [13]. The robustness
and flexibility of these systems can be the starting point
for the creation of different kinds of TIs that cannot be
obtained otherwise.
In fact, it is known that hole-doped zinc-blende semi-

conductors naturally have large SOC that originates from
the atomic p3=2-p1=2 fine structure splitting. We demon-

strate that the effective SOC in a semiconductor quantum
well with a superimposed hexagonal superlattice can be
controlled by the strength of the transverse confinement
and the scale of the superlattice. Hence, the SOC gap can
be made comparable to the bandwidth or continuously
switched to zero. Finally, we show that the SOC leads to
the appearance of chiral spin edge modes in contrast with
systems such as graphene where these edge states exist
even in the absence of SOC [14]. Thus, in our proposal, the
system can be continuously tuned between the Dirac metal,
a topological insulator, and a standard band insulator.
As it is well known [13], in the 3D bulk of a semicon-

ductor, the hole wave function in systems like GaAs origi-
nates from the atomic p3=2 orbital and, thus, the hole has

an angular momentum J ¼ 3=2 (the so-called hole spin
S ¼ 3=2). In the large wavelength approximation (the
k � p approximation), the hole effective Hamiltonian is
proportional to the second power of the hole momentum
k. The only kinematic structures allowed by symmetries
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are k2, ðk � SÞ2, and T����k�k�S�S�, where T���� is the

4th rank tensor built of unit vectors of the cubic lattice that
is known to be parametrically small relative to the other
terms [13] and will be disregarded in what follows. In this
case, the effective Hamiltonian can be written as (we use
units such that @ ¼ 1)

H3D ¼ k2

2me

ð�1 þ 2:5~�Þ � ~�
ðk � SÞ2
me

; (1)

where me is the free electron mass and �1, ~� are the
Luttinger-Kohn parameters [15]. Hereafter, we use the
parameters for GaAs where �1 � 6:8, ~� � 2:9 [16].
Notice that ~� parametrizes the effective SOC and is com-
parable with �1, which parametrizes the effective hole
kinetic energy.

The 3D semiconductor can be geometrically confined in
one direction, creating a 2D quantum well. For simplicity,
we assume that the confinement is described by an infinite
square well of width d and that only the lowest quantum
state, j0i, has to be taken into account. In this case we have
h0jk̂zj0i ¼ 0 and h0jk̂2z j0i ¼ �2=d2. As a result, the in-
plane momentum is small, kx, ky � �=d, and the k2zS

2
z

term in (1) enforces the spin quantization along the z axis.
The lowest energy state corresponds to Sz ¼ �3=2 and
the higher state corresponds to Sz ¼ �1=2, giving rise
to the heavy (Sz ¼ �3=2) and light (Sz ¼ �1=2) hole
states [13]. According to (1) the value of the splitting
between these states is given by � ¼ E1=2 � E3=2 ¼
4~�ðð�=dÞ2=2meÞ. When the hole density is low, only the
heavy hole band is filled. The heavy hole 2D dispersion
follows from (1) and has several contributions. Firstly,
there is a diagonal term due to the z confinement contri-
bution which is just the matrix element of (1):

p2

2me

ð�1 þ 2:5~�Þ � ~�
p2

2me

h3=2jS2xj3=2i ¼ p2

2me

ð�1 þ ~�Þ:
(2)

Here, p ¼ ðkx; kyÞ is the in-plane momentum. There is

also the 2nd order perturbation theory contribution due to
the �ð~�=meÞ½kxkzðSxSzþSzSxÞþkykzðSySzþSzSyÞ� term
in (1). This term generates virtual z excitations. A straight-
forward calculation gives the following 2nd order contri-
bution for GaAs: �1:6ðp2=2meÞ. Putting these results
together with (2), we find that the in-plane mass of the
heavy hole is m� ¼ me=ð�1 þ ~�� 1:6Þ � 0:12me. For a
soft parabolic z confinement the mass can be somewhat
larger, m� � 0:15–0:2me.

The ðp � SÞ2 part of the Hamiltonian (1) leads to the
heavy-light hole mixing. The mixing matrix elements are

hp;�1=2jHjp; 3=2i ¼ �
ffiffiffi
3

p
~�

2me

ðpx þ ipyÞ2;

hp; 1=2jHjp;�3=2i ¼ �
ffiffiffi
3

p
~�

2me

ðpx � ipyÞ2;

with states given by

jp; "i ¼
���������þ 3

2

�
þ �ðpx þ ipyÞ2

��������� 1

2

��
eip�r;

jp; #i ¼
���������� 3

2

�
þ �ðpx � ipyÞ2

��������þ 1

2

��
eip�r;

� ¼
ffiffiffi
3

p
~�

2me�
¼

ffiffiffi
3

p
d2

4�2
; �2p4 � 1:

(3)

Here we have introduced an effective ‘‘spin’’ s ¼ 1=2
degree of freedom describing the two j"i and j#i states.
Interestingly, ~�, which can be considered as a strength of
the spin orbit interaction, see Eq. (1), is canceled out in the
expression for � in Eq. (3). One can call it ‘‘ultrarelativ-
istic’’ behavior; the spin orbit is so large that it does not
appear explicitly in the answer.
In order to generate the TI, a potential UðrÞ with hex-

agonal (triangular) symmetry and spacing L, as shown in
Fig. 1, is superimposed to the 2D electron gas [17–19].

The lattice translation vectors are L1 ¼ ðL; 0Þ, L2 ¼
ððL=2Þ; ð ffiffiffi

3
p

L=2ÞÞ. Hence, there are two independent recip-
rocal lattice vectors in the Brillouin zone (see Fig. 1):

G 1 ¼ 2�

3L
ð3; ffiffiffi

3
p Þ; G2 ¼ 2�

3L
ð0;2 ffiffiffi

3
p Þ; G3 ¼G1�G2:

The points K1, K2, K3 are connected by vectors Gi, and K
0
i

are obtained from the Ki by reflection. In order to simplify
the notation, we will measure energy in units of the band-
width:

E0 ¼ K2

2m� ¼
ð4�=3LÞ2

2m� : (4)

In the case of GaAs, assuming L ¼ 20 nm, which can be
obtained experimentally with standard lithographic tech-
niques, we have E0�13meV. Notice, however, this energy
scale can be easily controlled by tuning L (for L ¼ 50 nm,
E0 � 2 meV).
Unlike the case of graphene where the starting point is a

tight-binding description [5], our description starts from a
nearly free electron description. We assume, for simplicity,
a periodic potential with a single Fourier component:

UðrÞ ¼ 2W½cosðG1 � rÞ þ cosðG2 � rÞ þ cosðG3 � rÞ�; (5)

where W gives the strength of the potential. This potential
has nonzero matrix elements only between states jki
and jk� Gii with matrix elements given by W.
Diagonalization of the Hamiltonian,

L
L

y

x

K K’2 3

K1K’1 Γ
M

K 3 K’2

FIG. 1 (color online). Triangular lattice (left) and the corre-
sponding Brillouin zone (right).
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H ¼ p2

2m� þUðrÞ; (6)

gives the hole dispersion shown in Fig. 2(a) with the
presence of two Dirac points with linear dispersion. If
the chemical potential is tuned at the Dirac point, the
average hole density is hni ¼ 8=ð3L2Þ. The map of
the charge density is shown in Fig. 2(b). At L ¼ 50 nm,
the average density is 1:1	 1011 cm�2. Even when the
potential is strong, namely, �W ¼ W=E0 ¼ 1–2, the disper-
sion, Fig. 2(a), is rather close to the result obtained by
perturbation theory. The charge density plot, Fig. 2(b), is
fully connected with empty spots at positions of the po-
tential maximums. So, in clear contrast to graphene, at
�W & 2 the system is much closer to the nearly free electron
regime than to the tight-binding one.

Perturbative analysis of the system in the nearly free
electron regime, at small �W ¼ W=E0, is straightforward
[17]. A hole state close to the Dirac point, q � 1, is
described by degenerate perturbation theory as

c q / c1j1i þ c2j2i þ c3j3i; jji ¼ eiðKjþqÞ�r: (7)

In the basis of states jji, the Hamiltonian (6) is represented
by 3	 3 matrices:

p2

2m� ! �ik

ðKiþqÞ2
2m� �E0þ�ik

Ki �q
m� ; U!Uik ¼W:

The eigenenergies of the U matrix are 0, 0, 3W. In order
to project in the double degenerate subspace of U, we
define [17]

jai ¼
0
1ffiffi
2

p

� 1ffiffi
2

p

0
BBB@

1
CCCA; jbi ¼

ffiffi
2
3

q
� 1ffiffi

6
p

� 1ffiffi
6

p

0
BBBB@

1
CCCCA: (8)

Projecting the kinetic energy to this basis and shifting the
zero energy level to E0, one finds

hajHjai ! ðK2 þK3Þ � q
2m� ¼ �vqx;

hbjHjbi ¼ ð4K1 þK2 þK3Þ � q
6m� ¼ þvqx;

hbjHjai ¼ ðK3 � K2Þ � q
2

ffiffiffi
3

p
m� ¼ �vqy;

(9)

where v ¼ ðK=2m�Þ ¼ ð2�=3Lm�Þ is the Fermi-Dirac ve-
locity. Notice that the velocity is controlled by the lattice
spacing. Hence, in the Pauli matrix (pseudospin) represen-
tation the effective low energy Hamiltonian reads:

H ¼ vð��zqx � �xqyÞ: (10)

One can perform the unitary transformation H ! TyHT,
where T represents two subsequent �=2 rotations around x
and y axes in the pseudospin space and transform the
Hamiltonian to the conventional form of a 2D Dirac
Hamiltonian: H ! v� � q. However, in what follows we
will use (10), as it is slightly more convenient for the study
of the edge states.
The effective SOC arises due to the heavy-light hole

mixing in the wave function (3). Certainly there are other
SOC mechanisms such as Rashba, Dresselhaus, and even
direct SOC with the modulating potential. However, all
these mechanisms are relatively weak while the ultrarela-
tivistic (see above) heavy-light hole mixing can give SOC
comparable with the kinetic energy. The heavy-light hole
mixing in the wave function (3) leads to the following SOC
correction to the matrix element of the potential (5):

�ðhp2jUjp1iÞ ¼ �4iW�2ðp1 � p2Þð½p1 	 p2� � sÞ: (11)

Here p1 � p2 ¼ �Gi, and s is the effective spin 1=2
introduced in (3). At long wavelengths the leading order
contribution for the SOC is given by

�ðh2jUj1iÞ¼�4iW�2ðK1 �K2Þð½K1	K2� �sÞ
¼ i

2ffiffiffi
3

p �sz; �¼3

2
�2K4W>0; (12)

which can be written as

�Hls ¼ 2ffiffiffi
3

p �sz

0 i �i

�i 0 i

i �i 0

0
BB@

1
CCA:

Projecting this matrix to the states jai and jbi defined by
(8), we get �Hls ! �2�sz�y. Thus, the final Hamiltonian,

including (10), reads

H ¼ vð��zqx � �xqyÞ � 2�sz�y: (13)

The Hamiltonian is written for theKDirac cone. Under the
parity reflection, K ! K0 ¼ �K, the kinetic energy (9)
changes its sign while the SOC (12) is unchanged.
Hence, at the K0 Dirac point the effective Hamiltonian
differs from (13) only by the replacement v ! �v. After
a unitary transformation the Hamiltonian (13) can be

-1

-0.5

0

Γ ΓK

ε

K2 3
’

(a)
(b)

0 1 2 3 4 5
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1

2
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0

1

2

3

4

5

FIG. 2 (color online). (a) The hole dispersion along a particu-
lar contour in the BZ. (b) Map of the total charge density (in
units 1=L2) at the chemical potential tuned to the Dirac point.
Both figures correspond to �W ¼ W=E0 ¼ 1 in the absence
of SOC.
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written in its conventional form [4], H ! v� � q�
2�sz�z, leading to a SOC gap given by

�so ¼ 2� ¼ 3�2K4W � 16

9

�
d

L

�
4
W; (14)

which shows that the SOC gap is a very strong function of
the d=L ratio.

SOC matrix elements (11) can be easily included in the
exact diagonalization. Notice that Eqs. (3) and (11) are
derived assuming �2p4 � 1. Even at small � this condi-
tion is violated for high momenta states included in the
exact diagonalization. To avoid this problem we account
(11) only for three lowest quantum states and set the SOC
matrix element equal to zero for all higher states. This
procedure gives the correct gap near the Dirac points.
Notice that �2K4 ¼ ð16=27Þðd4=L4Þ � 0:037, for d=L ¼
0:5. The dispersion calculated numerically for this value of
the SOC and �W ¼ 2 is shown in Fig. 3(a). The calculated
spin-orbit gap is close to the analytical formula (14). By
varying the transverse confinement width d, see Eq. (14),
one can continuously change the SOC gap and, hence, the
electronic properties of devices made in these systems.

In order to study the presence of edge states, we have to
consider a sample with a confining potential at the edge.
Having in mind simplicity, we consider an infinite edge
potential. The mechanism of the edge state formation
discussed here is qualitatively different from that in the
graphene [5] because of the nature and strength of the
potentials in the two cases: graphene is better described
by the tight-binding model, while semiconductors are bet-
ter described by the nearly free electron approximation. In
graphene described by the tight-binding approximation,
edge states exist even without the SOC (say, along the
zigzag direction), and the SOC only modifies the disper-
sion of the state [4]. On the other hand, in the nearly free
electron approximation the SOC is crucial for the forma-
tion of the edge state.

Let us consider the effect of a laterally confining poten-
tial to the lattice potential (5). We assume

Uconf ¼
(
0 if y > y0

1 if y < y0:

The envelope wave function of the edge state at y > y0 is
given by

c ¼ A
c a

c b

� �
eiqxxe�	y:

Solving Hc ¼ 
c with Hamiltonian (13), one finds


 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ v2q2x � v2	2

q
;

c a ¼ 1;

c b ¼ i
v	þ 2sz�

vqx � 

:

(15)

The corresponding full coordinate wave function reads:

c / eiqxxe�	yfjai þ c bjbig;
jai ¼ 1ffiffiffi

2
p ðeiK2�r � eiK3�rÞ;

jbi ¼ 1ffiffiffi
6

p ð2eiK1�r � eiK2�r � eiK3�rÞ;

(16)

where we have used Eqs. (7) and (8) for jai and jbi. The
wave function must be zero at y ¼ y0 at the position of the
confining wall. It is obvious that one cannot satisfy this
condition at arbitrary y0. Fortunately, it is very easy to find

the state if the wall position is chosen as ð2�= ffiffiffi
3

p
LÞy0 ¼

�N, where N is integer. At y ¼ y0 the basis wave function
jai is zero at any x. Therefore, to have c ðx; y0Þ ¼ 0 we
need only to impose c b ¼ 0. Hence, using (15) we con-
clude that the edge state exists only at sz ¼ �1=2:

sz ¼ �1=2; 	 ¼ �=v; 
 ¼ �vqx;

which is valid near the K Dirac point. We already pointed
out that at the K0 Dirac point the effective Hamiltonian
differs from (13) only by the replacement v ! �v. The
edge solution (15) is transformed accordingly. Therefore,
at K0 the edge state exists only at sz ¼ þ1=2:

sz ¼ þ1=2; 	 ¼ �=v; 
 ¼ vqx:

The dispersion of the edge states with sz ¼ �ð1=2Þ is
shown in Fig. 3(b). We found the edge states at a special
position of the confining wall. An explicit calculation at a
different wall position or shape is more involved since the
calculation must include admixture of high momentum
states to the wave function (16). However, a variation of
the wall position or shape does not influence the edge states
since they are topologically protected.
The edge states support the spin current at the edge of

system in the regime of a TI. In Fig. 3 the energy is given in
units of the bandwidth E0, Eq. (4), which depends on the
period of the modulating potential. Present lithographic
techniques can give the period L ¼ 20–30 nm in GaAs
and L � 10 nm in Si. According to Fig. 3 this results in the
spin-orbital gap �so � 10 meV. By increasing the ratio
d=L the gap can be further boosted up by a factor �2.
All in all, the existing technology can produce a TI

-2.5

-2

-1.5

Γ K

ε

23
’ ΓK

(a)

-2.5

-2

-1.5

−2π/3 +2π/3

s =-1/2 s =+1/2zz

kx

(b)

ε

FIG. 3. (a) The hole dispersion at �W ¼ 2 along the � ! K2 !
K0

3 ! � contour in the BZ. The spin orbit splitting corresponds

to d=L ¼ 0:5. (b) The dashed lines show the dispersion of sz ¼
�ð1=2Þ edge states. The solid lines show boundaries of the 2D
continuum.
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operating at a temperature of 10–100 K. Improvement of
lithographic techniques down to scale L � 5 nmwill open
the way to a tunable room temperature TI.

A disorder created by charged impurities, if strong, can
destroy the miniband structure. There are two issues re-
lated to the disorder: (i) the hole mean free path and
(ii) local fluctuations of the Fermi energy. In clean GaAs
the electron mean free path is about 30 �m. For holes the
mean free path is shorter, but still it is about 5 �m [20], so
on this side we are safe, the superlattice can be larger than
100	 100 sites. To estimate the inhomogeneity of Fermi
energy, we refer to Shubnikov–de Haas oscillations. For
holes in clean GaAs the oscillations are observed down to
magnetic field 0.1 T [20]. This corresponds to the cyclotron
frequency 0.05 meV, and this is the upper limit for the
Fermi energy inhomogeneity. So, we are safe here, too.

In conclusion, we have shown that it is possible to create
robust TI states in ordinary semiconductors with strong
SOC by quantum confinement and superimposed poten-
tials with hexagonal symmetry. We have shown that the
SOC gaps can be as large as the heterostructure bandwidth
and can be controlled by varying the confinement potential,
the strength, and the scale of the superimposed potentials.
These systems present amazing flexibility and can be tuned
between completely different regimes such as the Dirac
metal, TIs, and standard band insulators. Thus, they present
an opportunity to study exotic physics in the framework of
materials that have been the basis of the current semicon-
ductor technology.
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