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Quantum transition points in the J-Q model—the test bed of the deconfined critical point theory—and

the SU(2)-symmetric discrete noncompact CP1 representation of the deconfined critical action are directly

compared by the flowgram method. We find that the flows of two systems coincide in a broad region of

linear system sizes (10< L< 50 for the J-Q model), implying that the deconfined critical point theory

correctly captures the mesoscopic physics of competition between the antiferromagnetic and valence-

bond orders in quantum spin systems. At larger sizes, however, we observe significant deviations between

the two flows which both demonstrate strong violations of scale invariance. This reliably rules out the

second-order transition scenario in at least one of the two models and suggests the most likely explanation

for the nature of the transition in the J-Q model.
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The concept of the deconfined critical point (DCP) [1–3]
was developed for understanding quantum transitions in
two dimensions (2D) between phases characterized by
different broken symmetries. The key feature of DCP is
the emergence of fractional degrees of freedom (spinons)
and gauge fields at the critical point (cf. [4]). Potentially,
the DCP scenario has a broad range of applications ranging
from quantum phases transitions in lattice models and
magnets to normal-superfluid transitions in multicompo-
nent charged superconductors, etc. [1–3,5,6]. Ultracold
atoms in an optical lattice is another promising system
where DCP can be tested experimentally [7].

A hallmark of the theory is a conjecture that the
DCP universality class is captured by the 3D classical
DCP action involving two complex-valued matter fields,
c a¼1;2, describing spinons coupled to a vector gauge field

[1–3,6]. Depending on the symmetry group of the under-
lying quantum system—global U(1) or global SU(2)—the
DCP action features the following symmetry in terms of
its two components: either the Z2 symmetry between two
spinon fields and the Uð1Þ � Uð1Þ symmetry associated
with the individual phases of c a or an enhanced SU(2)
symmetry between the spinon fields. However, flowgram
studies of the typical Uð1Þ � Uð1Þ [8] and SU(2) [9] DCP
actions revealed generic runaway flows consistent with
weak first-order transitions for any value of the gauge
interaction (cf. Refs. [10,11], where the first order was
observed, respectively, in a special model, or at a specific
value of the interaction).

The initial work, focused on microscopic models of the
superfluid to solid quantum phase transitions, first claimed
the observation of the second-order Uð1Þ � Uð1Þ transition
[12], but severe violations of scale invariance revealed in

the subsequent analysis all but ruled it out [13]. Similarly
to the Uð1Þ � Uð1Þ case, early studies of the antiferro-
magnetic SU(2)-symmetric J-Q model [14–16] suggested
that the Néel phase transforms into the valence-bond solid
(VBS) in a continuous fashion, while subsequent work
[17,18] revealed violations of scale invariance. It is impor-
tant, however, that, up to linear system sizes of a few
hundred sites, the J-Q model clearly demonstrates an
emergent U(1) symmetry and its runaway flow remains
rather weak, leaving room for speculations about the
second-order DCP scenario [18].
In this Letter, we perform a direct quantitative

comparison of critical flows in the J-Q and the 3D
SU(2)-symmetric discrete noncompact CP1 models. The
rationale behind our study is as follows. Slow runaway
flows in both models suggest the key point that, indepen-
dently of the order of the transition, the DCP theory, in
general, and the 3D SU(2)-symmetric discrete noncompact
CP1 model, in particular, capture the essence of the quan-
tum phase transition at least at intermediate scales of
distances. And we indeed find that the winding-number
flowgrams [8,9] of the two models can be collapsed in a
significantly large region of linear system sizes (up to
L � 75 for the J-Q model), proving the hypothesis. At
larger sizes we observe significant deviations between
the two flows which preserve their runaway character.
The most conservative conclusion, then, is that at least
one of the two models does not feature the second-order
criticality, with the straightforward interpretation being
that both models feature weak first-order transitions.
J-Q and DCP models.—The SU(2)-symmetric J-Q

model describing s ¼ 1=2 spins on a square lattice has
been analyzed in Ref. [14]:
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4

�
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The first sum runs over nearest-neighbor sites hiji and
represents the standard Heisenberg model with J > 0.
The second sum runs over the corners of plaquettes
P ¼ hijkli such that ij and kl form two parallel adjacent
horizontal or vertical links and add the four-site ring-
exchange terms with Q> 0. The model features a phase
transition between the Néel and an insulating VBS phase
(its precise nature, however, cannot be determined from
available system sizes [17,19]). While in the Néel phase

the order parameter, the Néel vector, ~S ¼ h ~̂Si is linear in
the spin operator, the VBS long-range order is based on a

bilinear scalar combination of ~̂S. Since broken symmetries
in these phases are different, according to the standard
Ginzburg-Landau-Wilson paradigm a single phase transi-
tion between them must be discontinuous. (The actual
discontinuities, however, should be very weak if one of
the order parameters is characterized by a significant
numerical smallness far away from the transition, as is
the case in the VBS phase of the J-Q model where the

dimer order
ffiffiffiffiffiffi
D2

p
� 1=20 and no signatures of Z4 broken

symmetry are observed even for largest system sizes [14].)
Thus, if a single continuous transition were observed, this
would be a strong evidence supporting the second-order
DCP scenario.

The DCP is described by the 3D classical two-
component SU(2) symmetric electrodynamics with the

emerging U(1) gauge vector field ~A [1–3], HDCP ¼R
d3xftj½ ~r� i ~A�c j2 þ ð1=8gÞð ~r� ~AÞ2g, where the spinor

c consists of two complex fields c ¼ ðc 1; c 2Þ.
According to the mapping, the Néel vector ~S ¼ ð1=2Þ ~n,
where ~n is given by

~n ¼ c � ~�c ; (2)

with ~� standing for the Pauli matrices.With the noncompact
CP1 fixed-modulus constraint [1], jc 1j2 þ jc 2j2 ¼ 1, one
obtains ~n2 ¼ ðjc 1j2 þ jc 2j2Þ2 ¼ 1 and nþ ¼ nx þ iny ¼
2c �

1c 2, implying that the azimuthal angle of ~n is the
relative phase of the spinon fields, ’ ¼ ’2 � ’1, where
c a � expði’aÞ, a ¼ 1, 2.
The lattice version of the DCP action on a simple cubic

lattice [2,3] is

HDCP ¼ �t
X

hiji;a
ðc �

aic aje
iAhiji þ c:c:Þ þ 1

8g

X

P

ð ~r� ~AÞ2;

(3)

where the gauge field Ahiji is oriented along the bond hiji
from site j to site i, and ~r� ~A is the lattice curl operator
evaluated on elementary plaquettes P . The effective con-
stants (t, g) relate in someway to the parameters of the J-Q
model (1). Below we will present evidence that g ¼ 1:1

and t ¼ 0:8822ð4Þ provide the closest description of
the J-Q model with J=Q � 0:04 up to a linear size
L� L� ¼ 75.
Dual variables.—In Ref. [9], the statistics of the

model (3) have been reformulated in terms of the dual

variables—integer bond currents ~JðaÞ which obey the
Kirchhoff conservation laws. Accordingly, the partition
function of the DCP action HDCP (3) can be represented as

Z ¼
Z

d ~A0

X

~W1; ~W2

Zð ~W1; ~W2Þ � exp½ið ~�’1 þ ~A0Þ � ~W1

þ ið ~�’2 þ ~A0Þ � ~W2�; (4)

where ~A0 stands for the q ¼ 0 harmonic of the gauge field
defined on the lattice with periodic boundary conditions,
~Wa are windings of the bond currents ~JðaÞ, and ~�’a stand
for the Thouless boundary phase twists of the spinon-field

phases ’a. By definition, Zð ~W1; ~W2Þ is the partition
function in a given winding number sector. The integration

over ~A0 yields the constraint ~W1 þ ~W2 ¼ 0 so that

Z ¼ P
~WZð ~W;� ~WÞ expði ~�’ � ~WÞ with ~�’ � ~�’1 � ~�’2.

The stiffness of the S-vector field is found from

�S ¼ 1

3L

d2 lnZ

dð ~�’Þ2
�������� ~�’¼0

¼ 1

3L
h ~W2i: (5)

It is important that at the critical point the scaling behavior

of winding numbers is characterized by h ~W2i ¼ Oð1Þ so
that �S / 1=L. In the ordered Néel phase h ~W2i / L and the
stiffness is finite, �S ¼ Oð1Þ.
Our simulations of the J-Q model (1) are based on the

path-integral representation for the partition function with
periodic boundary conditions in the imaginary time
0< � 	 �, where � denotes the inverse temperature (in
both cases we employ the worm algorithm approach [20],
and simulations of the DCP action were performed as
described in Ref. [9]). Accordingly, the spin stiffness �JQ

with respect to the Thouless phase twist can be expressed
in terms of the spin worldline windings W 0

x, W
0
y along the

spatial directions x and y, respectively:

�JQ ¼ 1

2�
½hðW 0

xÞ2i þ hðW 0
yÞ2i�: (6)

In order to compare the two models at the transition
point, we also need to fine-tune the �=L ratio for each
system size L in order to reach the space-time symmetry in
the J-Q model. We achieve this by defining a space-time
symmetric winding in the time direction, W 0

� �
P

x;ySz (in

the basis where Ŝz ¼ Sz ¼ 
1=2 is diagonal), and requir-
ing that its mean-square fluctuations coincide with
hðW0

xÞ2i ¼ hðW 0
yÞ2i. We note that W 0

� is defined without

the factor of 2 [cf. Eq. (4) of Ref. [18]]. Such definition
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guarantees that fluctuations ofW 0
� proceed in the same way

as the spatial windings do—in increments of 
1.
Thus, if parameters of both models (1) and (3) are

kept at the critical point J=Q � 0:04 [14] and t ¼ tðgÞ
(below the bicritical point) [9], the universal values of
the winding-number fluctuations in both models RJQ ¼
h½ðW 0

xÞ2 þ ðW 0
yÞ2 þ ðW 0

�Þ2�i �Oð1Þ and R ¼ h½ðWxÞ2 þ
ðWyÞ2 þ ðWzÞ2�i �Oð1Þ must coincide provided J-Q and

noncompact CP1 models have the same fixed point.
Finite size analysis.—Simulations of both models have

been conducted for a sequence of linear sizes using exactly
the same definition of the pseudotransition point in a finite
size system, according to the flowgram method [8,9].
Specifically, we tuned model parameters so that the ratio
of statistical weights of configurations with and without
windings F equals the same constant of order unity. We
have chosen F ¼ 0:55 because it offers the smallest
deviations from the space-time symmetry in the J-Qmodel
at large L, as shown in Fig. 1. The values of the parameters
at the pseudotransition points for both models are pre-
sented in Fig. 2.

The universality of scaling behavior is characterized by
a unique function R ¼ RðF Þ in the thermodynamic limit
L ! 1, �� L; i.e., for fixed F ¼ 0:55 one expects that
RðLÞ curves saturate to the same value even if they deviate
from each other at finite L. To see if this is indeed the case
we have measured RJQ versus L and R versus (L, g) for

several values of L (from L ¼ 4 to L ¼ 36 for the DCP
model and from L ¼ 6 to L ¼ 196 for the J-Q model).
Figure 3 shows the family of DCP flowgrams RðLÞ for
several values of the interaction constant g. It also shows
the flowgram RJQðLÞ for the J-Q model. It is immediately

clear that the values of R curves overlap, and all by itself

this is an evidence that DCP theory captures the physics of
the transition point in the J-Q model. This crucial aspect
as well as that all the curves feature divergence with L, in
violation of the scale invariance hypothesis for both
models, will become more evident below.
As discussed earlier in Ref. [9], the family of DCP

flowgrams can be collapsed on a single master curve by
rescaling system sizes as L ! CðgÞL, where CðgÞ is found
as a variational distance scale for each value of g. This
collapse implies that properties of the DCP model at
coupling strength g ¼ g1 and length scale L ¼ L1 are
essentially the same as at g ¼ g2 and L ¼ L2 ¼
L1Cðg1Þ=Cðg2Þ, provided L is larger than some micro-
scopic size � 6. Figure 4 shows the quality of the data
collapse procedure as well as the master curve which
emerges from it. It also shows the flowgram of the J-Q
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FIG. 1 (color online). Optimal ratio �ðLÞ=L versus L, with
the numerical data represented by dots obtained at the pseudo-
critical points defined in the text. Solid red line is the fit by
Dþ A expð�BLÞ and the dash-dotted blue line is the fit by
Dþ B=L, with the dashed black line representing the asymptote
�=L ¼ D ¼ 0:4270
 0:0005 corresponding to the space-time
symmetry of the J-Q model.
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model with rescaled distance L ! CJQL. The value of CJQ

has been adjusted in order to achieve the best overlap with
the DCP master curve. Note that the freedom of choosing
CJQ is equivalent to shifting the RJQ curve horizontally as a

whole (in the logL scale); i.e., the curve’s shape remains
preserved. It means that the rescaling procedure is not
supposed to result in the same slope at the crossing point

between the two flows unless they have some common
origin. As can be seen, the two curves coincide with each
other at length scales 10< L< 50 (in terms of ‘‘bare’’ J-Q
model sizes) before they start significantly diverging
from each other at L * L� ¼ 75. It is also important
that the J-Q flow starts from the O(4) universal value
R0
Oð4Þ � 0:475 rather than from the O(3) universality char-

acterized by R0
Oð3Þ � 0:583 as one would expect from the

classical Heisenberg model; see Fig. 5. Finally, as Fig. 5
clearly shows, the J-Q flow runs past the O(3) universality
at L> L�.
Conclusion and discussion.—Our key finding is that the

physics of the transition point between the Néel and
insulating VBS phases in the J-Q model is indeed
captured by the DCP model up to a large length scale
L� ¼ 75. At small sizes the flows of R and RJQ start from

the universal value characterizing the O(4) universality
class R0

Oð4Þ � 0:475. This very fact is a strong indication

that spinons emerge as dominant degrees of freedom in
the J-Q model already at length scales L < 8 [in agree-
ment with the observed U(1) symmetry of the VBS order
parameters [14]]. However, the divergence of the flows
at L > L� unambiguously excludes the possibility that the
J-Q model and the DCP action share the same criticality
in the thermodynamical limit.
As shown in Ref. [9], the runaway flow of the DCP

master curve ends up in the first-order phase transition
(detectable at g � 1:65 for sizes L� 30–36). [The rescal-
ing function CðgÞ shown in the inset in Fig. 4 is a smooth
function defined on g � 0. It has no features indicating the
presence of the tricritical point at some g ¼ gtr > 0.] This
explains why the J-Q and DCP flows ultimately depart.
Given the data, there are two possibilities for the ultimate
fate of the J-Q flow: either the first-order transition or
some unknown universality at larger values of R0. The
fact that both models follow the same flow at L< L�
and both violate the scale invariance hypothesis at large
length scales strongly favors the first possibility—while
showing quasiuniversal behavior at intermediate L the
two models deviate from this universality when the sys-
tem size is approaching the size of the first-order nuclea-
tion bubble which does not need to be the same in
different models.
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