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Molecular dynamics simulations of cavitation in a Zrs,Cus, metallic glass exhibit a waiting time
dependent cavitation rate. On short time scales nucleation rates and critical cavity sizes are commensurate
with a classical theory of nucleation that accounts for both the plastic dissipation during cavitation and the
cavity size dependence of the surface energy. All but one parameter, the Tolman length, can be extracted
directly from independent calculations or estimated from physical principles. On longer time scales strain
aging in the form of shear relaxations results in a systematic decrease of cavitation rate. The high
cavitation rates that arise due to the suppression of the surface energy in small cavities provide a possible
explanation for the quasibrittle fracture observed in metallic glasses.
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Amorphous materials, commonly termed glasses when
quenched from the melt, occur in every class of material
including ceramics, metals, and polymers. While the shear
response of amorphous solids has received a significant
amount of attention in the theoretical physics and molecu-
lar simulation literature over the past decade [1-8], signifi-
cantly less attention has been devoted to hydrostatic
loading in such systems [9,10]. This omission appears
significant since experimental studies in metallic glass
(MG) and other amorphous solids reveal nanocavities
[11,12] that form during or subsequent to deformation
and strongly implicate cavitation in the physics of the
fracture process zone, even when the fracture behavior is
relatively brittle [13—15]. The importance of cavitation in
fracture is supported by recent molecular dynamics (MD)
simulations in glassy CusyZrsy and FegyP, [16].

Theory and simulation studies have been applied to
understand this process in liquids more commonly than
in glasses. Two recent studies [17,18] simulated the
process of homogeneous nucleation in liquids in compari-
son with experimental data. These studies observed evi-
dence of the curvature dependence of the surface energy on
the measured cavitation rate, an effect that has itself been
the subject of a significant amount of study [19-22]. One
particularly notable contribution from simulation was the
mapping out of the point at which the gas-liquid spinodal
dips below the glass line and the glass must become
unstable to cavitation [23].

Continuum mechanics approaches to modeling the
kinetics of cavitation have been developed over many years
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by numerous researchers [6,24-30]. Often preexisting cav-
ities are assumed to exist due to voids, inclusions, or
intersections of grains, and the effect of surface energy is
neglected. Various assumptions have been considered
regarding the plastic constitutive behavior around the cav-
ity [6,24-30]. In these cases, because plastic and elastic
energy both scale with the volume of the void, above a
critical stress cavity growth becomes unbounded. Here, as
in some earlier work in the literature [31], we consider the
effect of surface energy, and take an explicitly statistical
view of cavitation so as to develop an expression for the
cavitation rate that allows us to make direct connection to
our simulation results.

We begin by considering the expected nucleation rate of
cavities in an amorphous solid. We then compare our
simulation results in Zrs,Cus to the theoretical predictions
and show that a classical nucleation theory (CNT) that
includes the effects of plastic flow and curvature dependent
surface energy is valid on short time scales, while on
longer time scales strain aging effects become important.

We start from the assumption that the energy fluctuation
needed to nucleate a cavity must be sufficient to generate
the new surface and also to rearrange the material to
accommodate the cavity. We can express this criterion as

dF = dF, — dF, > 8W,, (1)

where dF is an incremental change in free energy due to an
incremental change in the size of the void, which can be
decomposed into contributions from the bulk elastic
response dF, and the surface dF,. These must exceed
oW, the incremental plastic work required for the void
to grow. If the void is spherical and grows monotonically
we can rewrite Eq. (1) as

4mr?Keodr — 8myrdr > 8W,(r, i), )

Published by the American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.110.185502
http://creativecommons.org/licenses/by/3.0/

PRL 110, 185502 (2013)

PHYSICAL REVIEW LETTERS

week ending
3 MAY 2013

where K is the bulk modulus, &4 is the volumetric strain at
the remote boundary, and vy is the surface energy. If we
assume that the plastic dissipation scales only with the
cavity volume then Eq. (2) becomes

rK(eo — &.)dr > 2vydr, 3)

where we define &, via the equivalency 6W, = Ke dV,,
where V., is the volume of the cavity. The surface energy is
known to be curvature dependent at small radii, and a form
for this dependence was proposed by Tolman [19] in which
v = ¥/(1 +28/r). Here v, is the surface energy of the
flat surface and O is a parameter known as the Tolman
length. We can see that the cavity becomes unstable at a

radius of
1 1 46 26
= —+—1/1+———, 4
Te =7 2 2 r r “)

where r* = 2y, /K(e — €.) represents the critical radius
for the case where surface energy is independent of curva-
ture (6 = 0). The free energy barrier for cavitation is

AF,. = gwrgl((s —&,) — 4myrl. ®)
Assuming that this energy barrier is large compared to the
thermal energy scale kzT the rate of cavitation is R, =
vexp(— AF.(g)/kgT), where v is the attempt frequency.

To investigate the process of cavitation in MG, we carry
out a series of MD simulations in simple models of two
binary MGs using the LAMMPS [32] code. We employ the
embedded atom method potential recently developed to
describe the interactions for Zr-Cu [33]. Two independent
Zr5,Cusg MG systems were quenched with cooling rates of
1 X 10'° (denoted as G1) and 1 X 10'> Ks~! (denoted as
G?2). The instantaneous configurations at various tempera-
tures (60, 100, 180, and 240 K) provided the initial con-
ditions for cavitation simulations with related temperatures.
Further details of the simulation methodology can be found
in the Supplemental Material including the means that were
used to create the initial conditions for the mechanical
tests and to measure the physical parameters for our theo-
retical analysis [34].

To quantify the dependence of the cavitation rate on
temperature and applied strain we simulated the two
samples, G1 and G2, at a variety of different state points.
At each state point we simulated 100 independent cavita-
tion events by starting with randomly distributed velocities
drawn from a Boltzmann distribution appropriate for the
temperature. We maintained each glass sample at constant
hydrostatic tensile strain under adiabatic conditions until a
cavity nucleation event was detected. The fraction of cavi-
tated samples f7 (¢) was calculated as a function of time for
each strain € at each temperature 7. Because all the simu-
lations for each & were carried out from the same initial
structure with the same thermomechanical history, the

cavitation was found to preferentially occur at the same
location for all simulations. If the cavitation process is a
Poisson process the fraction cavitated can be expected to
vary with time as fZ(r) = 1 — ¢ !, with a single time
constant R”, the rate of cavitation.

As shown in Fig. 1, a plot of In(1 — £7(#)) as a function
of ¢ does not behave in a linear fashion for any strain over
the entire time window. This strongly suggests that the
cavitation process is not a Poisson process, and other rate
processes occur on time scales similar to the cavitation
time. However, there does exist a time window for each
applied strain over which In(1 — £Z(¢)) is linear in ¢ and
therefore Poissonian. We can quantify this window by 7,
the time at which our best short-time linear fit intersects a
linear fit to the long-time data.

As shown in Fig. 2(a), the typical relationship between
In(1 — £I(¢)) and ¢ can be separated into three time scales:
short-time (¢ < 7,), medium-time, and long-time (¢ > 7,).
Here, we representatively select three samples that each
cavitate on a different time scale. The potential energies
(PE) as a function of the holding time for these three
samples are shown in Fig. 2(b); the sudden decrease of
PE corresponds to the cavity nucleation event. Here the
initial structure is compared to the atomic configuration
just prior to cavity nucleation via the local shear strain as
shown in Figs. 2(c)-2(f) calculated using the technique
introduced in Ref. [1]. The short-time cavitated sample
[Fig. 2(c)] shows almost no strain before cavitation.
The other two samples [see Figs. 2(d) and 2(e)] as well
as the noncavitated sample [Fig. 2(f)] exhibit significant
structural relaxation corresponding to regions of high
local strain.
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FIG. 1 (color online). The value of In(1 — fI(#)) as a function
of ¢ for several applied strains of G1, where f7 is the fraction of
samples that have cavitated. The times of deviation from
Poissonian behavior, 7., are denoted by arrows. The simulated
temperature prior to loading is 100 K.
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FIG. 2 (color). (a) The relationship between In(1 — £I(¢)) and
t of G1 glass at applied strain ~0.174. Three samples, marked as
1, 2, and 3, show different cavitation times as denoted by the
arrows. The potential energies as a function of holding time for
these samples are shown in (b). Local strain calculations are
shown at different holding times for each sample as denoted by
¢, d and e in (b) and the local shear strains are shown in
(c)—(e) for each case. The local shear strains for a noncavitated
sample at 10 ns is shown in (f). In these images blue (black)
denotes low strain (~0%) and other colors (gray) denote high
strain. The white circles delineate the high strain regions and the
red “X” denotes the center of cavitation. The simulated tem-
perature prior to loading is 100 K.

The short time scale cavitation processes can be ana-
lyzed as a Poisson process and the free energy barrier to
cavitation AF, can be extracted for data from both G1 and
G2 as shown in Fig. 3. Data from four different tempera-
tures collapse to a single curve for each glass preparation
with an attempt frequency » = 0.1 = 0.01 ps~!, which is,
to a good approximation, the frequency of the longest
wavelength dilatational mode in the simulation cell. For
fitting these data by the predictions of Eq. (5) K from
pressure-volume measurements was measured to be
106.0 = 0.2 GPa, and 7y, from energy differences before
and after the introduction of free surface was measured to
be 0.080 = 0.02 eV/A? and 0.086 = 0.03 eV/A? for G1
and G2, respectively. The value of ., 2.2% and 2.6% for G 1
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FIG. 3 (color). The free energy barrier to cavitation as a func-
tion of strain for both G1 and G2 at various initial simulated
temperatures. Scaling is achieved with an attempt frequency of
0.1 ps™. Solid lines are plotted based on Eq. (5) with calculated
parameters for each glass [34] and a Tolman length of 6 = 1.15 A.

and G2, respectively, was obtained from the ratio of the
kinetic energy rise to the pressure drop during adiabatic
cavity growth. These calculations are described in detail in
the Supplemental Material [34], leaving only a single fitting
parameter, the Tolman length 6. Figure 3 shows the best fit
for the data for both glasses with § = 1.15 + 0.01 A and
implies that the short-time cavitation process can be
described as the nucleation of a void with a critical size
predicted by Eq. (1) and shown by the red lines in Fig. 4(a).

Because the location of cavity nucleation of each sample
is now known, we can directly test the critical cavity radius
prediction of the theory by embedding a bubble centered at
this position and measuring the critical cavity size directly
[34]. While holding the volume of the simulation cell fixed
we increase the bubble radius R from O with a constant
inflation rate and measure the bubble size that induces
cavitation [34]. The data are plotted against the curve
extracted indirectly from the cavitation rates in Fig. 4(a).
We see that the curve based on Eq. (4) with 6 = 1.15 A
gives the best fitting for the directly measured R, data of
both glasses, confirming that Eqs. (1) and (2) correctly
describe the cavitation event in the CusyZrs; MG as a
nucleation event. We conclude that cavitation in MG is
controlled by the spatial heterogeneity in the glass with
preferential nucleation sites able to cavitate by surmount-
ing a free energy barrier that is significantly lower than
would be expected in the absence of the effect of cavity
radius on surface energy. The relatively smaller activation
energy of the more slowly cooled MG implies that anneal-
ing can increase brittleness by lowering the barrier to
cavity nucleation.

Within the CNT framework we can investigate the
nature of the local fluctuations that control cavity
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FIG. 4 (color). (a) The measured critical cavity nucleation size
as a function of €. The red solid lines (blue dashed lines) are the
predictions by Eq. (4) with 6 = 1.15 A (6 = 0 A). (b) Two-
dimensional plot of free energy barrier AF,. as a function of &,
and & based on Eqs. (3)—(5). The measured &, and & for 100
different cavitation sites are shown as red “X’’. The white (solid)
line is related to the spontaneous cavitation event with lowest
AF.. (c) The free energy barrier to cavitation normalized by the
short-time Poissonian barrier to cavitation as a function of time in
units of 7, showing the increase in the cavitation barrier upon
activation of shear relaxation. (d) The activation energy for shear
relaxation as a function of strain in G1. Scaling over several
temperatures is achieved with an attempt frequency of 1.0 ps~!.
Dashed lines are plotted based on Eq. (5) with calculated parame-
ters for G1 34 and the Tolman length & = 1.15 A. All the
temperatures denote the simulated temperature prior to loading.

nucleation. While many of the parameters in the theory are
global (K, T, ¥, €x) two are inherently local, the Tolman
length & that characterizes local length-scale dependent
variations in surface energy, and &., which characterizes
local susceptibility to plastic rearrangement. To determine
the relative importance of local variations of these two
quantities we initiate 100 cavitation events at random
locations using the embedded bubble method. For each
cavitation event we directly measure &, and the critical
radius and infer 6 and AF,.. These data are shown in
Fig. 4(b). As expected, the spontaneous cavitation site has
a lower activation barrier than any of the induced cavitation
sites. The correlation coefficient between €. and & is low
(<0.13), and the relative sensitivity of cavitation to varia-
tions in surface energy versus plastic response, i.e.,
(0AF./36)dsrp/(9AF./de )e,, . is approximately 3.4.
While both effects play a role in determining the nucleation
barrier, local surface energy fluctuations dominate.

We now consider the effect of strain aging on cavitation.
Recall that the time prior to the breakdown of Poissonian
behavior, 7, is dependent on the applied strain. The free

energy barrier to cavitation, as inferred from the rate of
cavitation, increases by 50%—70% from the value predicted
by Eq. (5) at 7, as shown in Fig. 4(c) for loading at 100 K.
We expect that this strain aging effect, ubiquitous in glasses,
is caused by structural rearrangement prior to cavitation that
arises when the holding time is comparable to the character-
istic shear relaxation time of the strained MG. To test this
supposition we use the measured values of 7, to extract the
activation energy of the shear relaxation as a function of
strain in Fig. 4(d) assuming 7, ! = v, exp(—AF,/kgT).
The attempt frequency v»,, found by scaling the results
from all temperatures, is on the order of the Einstein fre-
quency as expected for a local relaxation. The activation
energy for shear relaxation is nearly linear with strain
extrapolating to 0.55 eV at zero pressure and zero applied
shear stress and exhibiting an activation volume with
respect to pressure of 4.5 A3, Comparison of this extrapo-
lation with the predicted activation energies for cavitation
shown as a dashed line in Fig. 4(d) indicates that only at very
high strains do we expect the energy barrier for cavitation to
drop below the barrier for shear relaxation.

The direct MD simulations of fracture in Ref. [16] did
not observe cavitation upon loading a crack in amorphous
CuZr, but cavitation was reported under biaxial loading.
The absence of cavitation and fracture initiation in that
work may be attributable to the small sample sizes attain-
able in MD, as the observed crack opening displacement
approached the sample size.

Our primary conclusion is that in the MG systems studied
cavitation appears to occur via a process that is well
described by CNT, and that the spatially fluctuating curva-
ture dependent surface energy, i.e., the Tolman length ef-
fect, significantly enhances cavitation in these materials.
These nucleation events appear to be heterogeneous, as
nucleation always occurs on the same site in a given sample.
Previous analyses have noted that variations in the elastic
modulus correlate with cavity nucleation sites in amor-
phous polymers [35]. Our analysis indicates that these
cavitation sites are characterized by low local surface en-
ergy (high 8) and, to a lesser degree, high structural sus-
ceptibility to plastic deformation (low &,). Strain aging also
appears to be important and arises from shear relaxations.
The energy barriers of these two processes were extracted
from our simulations of Zr5,Cus,. The apparent ubiquity of
heterogeneous nucleation sites for cavitation provides a
strong indication that nanoscale cavitation must be seri-
ously considered as one factor, and perhaps the primary
factor, contributing to the fact that many MGs exhibit
quasibrittle behavior during fracture. The physics of cav-
itation on these smallest scales, incorporating multiaxial
stress states that go beyond the current analysis, needs to be
incorporated into theories of constitutive response in amor-
phous solids in order to provide first-principles predictions
of important mechanical properties such as fracture tough-
ness and ductility.
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