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3INFN, Sezione di Bari, Via Orabona 4, 70126 Bari, Italy

4Department of Physics, Peking University, Beijing 100871, People’s Republic of China
(Received 8 January 2013; published 2 May 2013)

We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of

electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian,

implementing the chiral symmetry breaking SUð2ÞL � SUð2ÞR ! SUð2ÞLþR with Goldstone bosons,

gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance

states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at

the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range

forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that

the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are

generic and apply to more specific scenarios such as the minimal SOð5Þ=SOð4Þ composite Higgs model.
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Introduction.—A new Higgs-like boson around 126 GeV
has just been discovered at the LHC [1]. Although its
properties are not well measured yet, it complies with the
expected behavior and therefore it is a very compelling
candidate to be the standard model (SM) Higgs boson. An
obvious question to address is to what extent alternative
scenarios of electroweak symmetry breaking (EWSB) can
already be discarded or strongly constrained. In particular,
what are the implications for strongly coupled models
where the electroweak symmetry is broken dynamically?

The existing phenomenological tests have confirmed
the SUð2ÞL � SUð2ÞR ! SUð2ÞLþR pattern of symmetry
breaking, giving rise to three Goldstone bosons, which in
the unitary gauge become the longitudinal polarizations
of the gauge bosons. When the Uð1ÞY coupling g0 is
neglected, the electroweak Goldstone boson dynamics is
described at low energies by the same Lagrangian as that
of the QCD pions, replacing the pion decay constant by the

EWSB scale v ¼ ð ffiffiffi
2

p
GFÞ�1=2 ¼ 246 GeV [2]. Contrary

to the SM, in strongly coupled scenarios the symmetry
is nonlinearly realized and one expects the appearance of
massive resonances generated by the nonperturbative
interaction.

The dynamics of Goldstone bosons and massive reso-
nance states can be analyzed in a generic way by using an
effective Lagrangian, based on symmetry considerations.
The theoretical framework is completely analogous to the
resonance chiral theory description of QCD at GeV ener-
gies [3]. Using these techniques, we investigated in Ref. [4]
the oblique S parameter [5], characterizing the electroweak
boson self-energies, within Higgsless strongly coupled
models. By the adoption of a dispersive approach and
imposition of a proper UV behavior, it was shown there

that it is possible to calculate S at the next-to-leading order,
i.e., at one loop. We found that in most strongly coupled
scenarios of EWSB, a high resonance mass scale is
required, MV > 1:8 TeV, to satisfy the stringent experi-
mental limits.
The recent discovery of a Higgs-like boson makes

updating the analysis mandatory, including the light-scalar
contributions. In addition, wewill also present a correspond-
ing one-loop calculation of the oblique T parameter, which
allows us to perform a correlated analysis of both quantities.
S measures the difference between the off-diagonal W3B
correlator and its SM value, whereas T parametrizes the
breaking of custodial symmetry [5]. More precisely, T
measures the difference between the W3W3 and WþW�
correlators, subtracting the SM contribution. The explicit
definitions of S and T are given in Refs. [4,5]. Previous one-
loop analyses can be found in Refs. [6–8].
Theoretical framework.—We have considered a

low-energy effective theory containing the SM gauge
bosons coupled to the electroweak Goldstone bosons, one
light-scalar state S1 with mass mS1 ¼ 126 GeV, and the

lightest vector and axial-vector resonance multiplets V��

and A��. We only assume the SM pattern of EWSB; i.e.,

the theory is symmetric under SUð2ÞL � SUð2ÞR and
becomes spontaneously broken to the diagonal subgroup
SUð2ÞLþR. S1 is taken to be singlet under SUð2ÞLþR, while
V�� and A�� are triplets (singlet vector and axial-vector

contributions are absent at the order we are working). To
build the Lagrangian, we only consider operators with the
lowest number of derivatives, as higher-derivative terms
are either proportional to the equations of motion or tend to
violate the expected short-distance behavior of the Green’s
functions [3]. We will need the interactions
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�
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ffiffiffi
2

p hA��f
��� i

þ FV

2
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ffiffiffi
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p hV��½u�; u��i

þ ffiffiffi
2

p
�SA
1 @�S1hA��u�i; (1)

plus the standard gauge boson and resonance kinetic terms.
The three Goldstone fields ~�ðxÞ are parametrized through
the matrix U ¼ u2 ¼ expfi ~� ~� =vg, u� ¼ �iuyD�Uuy
with D� the appropriate gauge-covariant derivative, and
hAi stands for the trace of the 2� 2 matrix A. We follow
the notation from Ref. [4]. The first term in Eq. (1) gives
the Goldstone Lagrangian, present in the SM, plus the
scalar-Goldstone interactions. For ! ¼ 1, one recovers
the S1 ! �� vertex of the SM. The calculation will be
performed in the Landau gauge, which eliminates the
mixing between Goldstone and gauge bosons.

The oblique parameter S receives tree-level contribu-
tions from vector and axial-vector exchanges [5], while T
is identically zero at lowest order (LO),

SLO ¼ 4�

�
F2
V

M2
V

� F2
A

M2
A

�
; TLO ¼ 0: (2)

To compute the one-loop contributions, we use the
dispersive representation of S introduced by Peskin and
Takeuchi [5], whose convergence requires a vanishing
spectral function at short distances,

S ¼ 16�

g2 tan�W

Z 1

0

dt

t
½�SðtÞ � �SðtÞSM�; (3)

with �SðtÞ the spectral function of theW3B correlator [4,5].
We work at lowest order in g and g0, and only the lightest
two-particle cuts have been considered, i.e., two Goldstone
bosons or one Goldstone boson plus one scalar resonance.
V� and A� contributions were shown to be very sup-
pressed in Ref. [4].

The calculation of T is simplified by noticing that, up to
corrections of Oðm2

W=M
2
RÞ,

�T ¼ ZðþÞ

Zð0Þ � 1; (4)

where ZðþÞ and Zð0Þ are the wave-function renormalization
constants of the charged and neutral Goldstone bosons
computed in the Landau gauge [9]. A further simplification
occurs by setting to zero g, which does not break the
custodial symmetry, so only the B-boson exchange pro-
duces an effect in T. This approximation captures the
lowest order contribution to T in its expansion in powers
of g and g0. Again, only the lowest two-particle cuts have
been considered, i.e., the B boson plus one Goldstone or
one scalar resonance.

Figure 1 shows the computed one-loop contributions to
S and T. Requiring the W3B correlator to vanish at high
energies also implies a good convergence of the Goldstone

boson self-energies, at least for the two-particle cuts we
have considered. Therefore, their difference obeys an
unsubtracted dispersion relation, which enables us to also
compute T through the dispersive integral

T ¼ 4�

g02cos2�W

Z 1

0

dt

t2
½�TðtÞ � �TðtÞSM�; (5)

with �TðtÞ the spectral function of the difference of the
neutral and charged Goldstone boson self-energies.
Short-distance constraints.—Fixing the scalar mass to

mS1 ¼ 126 GeV, we have seven undetermined parameters:

MV ,MA, FV ,GV , FA,!, and �SA
1 . The number of unknown

couplings can be reduced using short-distance information.
Assuming that weak isospin and parity are good sym-

metries of the strong dynamics, the W3B correlator is
proportional to the difference of the vector and axial-vector
two-point Green’s functions [5]. In asymptotically free
gauge theories, this difference vanishes at s ! 1 as 1=s3

[10], implying two superconvergent sum rules, known as
the first and second Weinberg sum rules (WSRs) [11],
which at LO give the relations

F2
V � F2

A ¼ v2; F2
VM

2
V � F2

AM
2
A ¼ 0: (6)

This determines FV and FA in terms of the resonance
masses, leading to

SLO ¼ 4�v2

M2
V

�
1þM2

V

M2
A

�
: (7)

Since theWSRs also implyMA >MV , this prediction turns
out to be bounded by [4]

4�v2

M2
V

< SLO <
8�v2

M2
V

: (8)

It is likely that the first WSR is also true in gauge
theories with nontrivial ultraviolet fixed points [7,12],
whereas the second WSR is questionable in some scenar-
ios. If only the first WSR is considered, but still assuming
the hierarchy MA >MV , one obtains the lower bound [4]

SLO ¼ 4�

�
v2

M2
V

þ F2
A

�
1

M2
V

� 1

M2
A

��
>

4�v2

M2
V

: (9)

FIG. 1. NLO contributions to S (two first lines) and T (two last
lines). A dashed (double) line stands for a Goldstone (resonance)
boson, and a curved line represents a gauge boson.
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The possibility of an inverted mass ordering of the vector
and axial-vector resonances [12] would turn this lower
bound into the upper bound SLO < 4�v2=M2

V . Note that
if the splitting of the vector and axial-vector resonances
was small, the prediction of SLO would be close to the
bound.

At the next-to-leading order (NLO) the computed W3B
correlator should also satisfy the proper short-distance
behavior. The �� and S� spectral functions would have
an unphysical growth at large momentum transfer unless
FVGV ¼ v2 and FA�

SA
1 ¼ !v. The first constraint guar-

antees a well-behaved vector form factor [3], whereas the
second relates the axial and scalar couplings. Once these
relations are enforced, the Goldstone boson self-energies
are convergent enough to allow for an unambiguous deter-
mination of T in terms of masses and !. Neglecting terms
of Oðm2

S1
=M2

V;AÞ,

T ¼ 3

16�cos2�W

�
1þ log

m2
H

M2
V

�!2

�
1þ log

m2
S1

M2
A

��
; (10)

where mH is the SM reference Higgs mass adopted to
define S and T. Notice that on taking mH¼mS1 and !¼1

(the SM value), T vanishes when MV ¼ MA as it should.
To enforce the second WSR at NLO, one needs the

additional constraint ! ¼ M2
V=M

2
A (constrained to the

range 0 � ! � 1). One can then obtain a NLO determi-
nation of S in terms of MV and MA

S¼ 4�v2

�
1

M2
V

þ 1

M2
A

�
þ 1

12�

�
�
log

M2
V

m2
H

� 11

6
þM2

V

M2
A

log
M2

A

M2
V

�M4
V

M4
A

�
log

M2
A

m2
S1

� 11

6

��
;

(11)

where terms of Oðm2
S1
=M2

V;AÞ have been neglected. Taking

mH ¼ mS1 , the correction to the LO result vanishes when

MV ¼ MA (! ¼ 1); in this limit, the NLO prediction
reaches the LO upper bound in Eq. (8).

If only the first WSR is considered, one can still obtain a
lower bound at NLO in terms of MV , MA, and !,

S�4�v2

M2
V

þ 1

12�

�
log

M2
V

m2
H

�11

6
�!2

�
log

M2
A

m2
S1

�17

6
þM2

A

M2
V

��
;

(12)

where MV <MA has been assumed and we have again
neglected terms of Oðm2

S1
=M2

V;AÞ. With mH ¼ mS1 , the

NLO correction vanishes in the combined limit ! ¼ 1
andMV ¼ MA, where the LO lower bound (9) is recovered.

Phenomenology.—Taking the SM reference point at
mH ¼ mS1 ¼ 126 GeV, the global fit to precision elec-

troweak data gives the results S ¼ 0:03� 0:10 and
T ¼ 0:05� 0:12, with a correlation coefficient of 0.891
[13]. In Fig. 2 we show the compatibility between these

‘‘experimental’’ values and our NLO determinations
imposing the two WSRs: Eq. (10) with ! ¼ M2

V=M
2
A and

Eq. (11). Notice that the linewith! ¼ M2
V=M

2
A ¼ 1 (T¼0)

coincides with the LO upper bound in Eq. (8), while the
! ¼ M2

V=M
2
A ! 0 curve reproduces the lower bound in

Eq. (12) in the same limit. Thus, a vanishing scalar-
Goldstone boson coupling (! ¼ 0) would be incompatible
with the data, independent of whether the second WSR has
been assumed.
Figure 2 shows a very important result in the two-WSR

scenario: with mS1 ¼ 126 GeV, the precision electroweak

data require that the Higgs-like scalar should have a WW
coupling very close to the SM one. At 68% (95%) C.L.,
one gets ! 2 ½0:97; 1� ([0.94,1]), in nice agreement with
the present LHC evidence [1], but much more restrictive.
Moreover, the vector and axial-vector states should be very
heavy (and quite degenerate); one finds MV > 5 TeV
(4 TeV) at the 68% (95%) C.L.
This conclusion is softened when the second WSR is

dropped and the lower bound in Eq. (12) is used instead.
This is shown in Fig. 3, which gives the allowed 68% C.L.
region in the space of parameters MV and !, varying
MV=MA between 0 and 1. Note, however, that values of
! very different from the SM can only be obtained with a
large splitting of the vector and axial-vector masses. In
general, there is no solution for !> 1:3. Requiring 0:2<
MV=MA < 1 leads to 1�!< 0:4 at 68% C.L., while the

MV

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

S

T

FIG. 2 (color online). NLO determinations of S and T,
imposing the two WSRs. The approximately vertical curves
correspond to constant values of MV , from 1.5 to 6.0 TeV at
intervals of 0.5 TeV. The approximately horizontal curves have
constant values of !: 0.00, 0.25, 0.50, 0.75, 1.00. The arrows
indicate the directions of growing MV and ! values. The shaded
ellipses give the experimentally allowed regions at 68% (orange,
center region), 95% (green, midregion), and 99% (blue, outer
region) C.Ls.
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allowed vector mass stays above 1 TeV [14]. Taking
instead 0:5<MV=MA < 1, one gets the stronger con-
straints 1�!< 0:16 and MV > 1:5 TeV. In order to
allow vector masses below the TeV scale, one needs a
much larger resonance-mass splitting, so that the NLO
term in Eq. (12) proportional to !2 compensates the
growing of the LO vector contribution. The mass splitting
gives also an additive contribution to T of the form
	T �!2 logðM2

A=M
2
VÞ, making lower values of! possible

for smallerMV values. However, the limit ! ! 0 can only
be approached when MA=MV ! 1.

In summary, strongly coupled electroweak models with
massive resonance states are still allowed by the current
experimental data. Nonetheless, the recently discovered
Higgs-like boson with mass mS1 ¼ 126 GeV must have a

WW coupling close to the SM one (! ¼ 1). In those
scenarios, such as asymptotically free theories, where the
second WSR is satisfied, the S and T constraints force! to
be in the range [0.94,1] at the 95% C.L. Larger departures
of the SM value can be accommodated when the second
WSR does not apply, but one needs to introduce a corre-
spondingly large mass splitting between the vector and
axial-vector states.

Similar conclusions can be obtained within more
specific models, particularizing our general framework.
For instance, let us mention the recent phenomenological
analyses of vector and axial-vector states within the
SOð5Þ=SOð4Þ minimal composite Higgs model [8,15]. In
this context, our scalar coupling would be related to the
SOð4Þ vacuum angle � and upper bounded in the form! ¼
cos� � 1 [15]. With this identification, the S and T con-
straints in Fig. 2 remain valid in this composite scenario.
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