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We propose a simple criterion to identify when Nambu-Goldstone bosons for different symmetries are
redundant. It solves an old mystery why crystals have phonons for spontaneously broken translations but
no gapless excitations for equally spontaneously broken rotations. Similarly for a superfluid, the Nambu-
Goldstone boson for spontaneously broken Galilean symmetry is redundant with phonons. The most
nontrivial example is Tkachenko mode for a vortex lattice in a superfluid, where phonons are redundant to
the Tkachenko mode which is identified as the Boboliubov mode.
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Introduction.—In many areas of physics, it is important
to study consequences of microscopic physics on macro-
scopic behaviors, sometimes called emergent phenomena.
One of the best examples in this category is the existence
of gapless excitations, called Nambu-Goldstone bosons
(NGBs), when global continuous symmetries are sponta-
neously broken [1].

For spontaneously broken internal symmetries in
Lorentz-invariant systems, the symmetries dictate the num-
ber (nngg), dispersion relation, and interactions of NGBs
completely. The present authors have generalized this well-
known result to systems without Lorentz invariance, and
proved a general formula [2]

1
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Here, |0) is a ground state of the finite volume system in the
presence of external fields B, that favor order parameters.
Note that the symmetry breaking pattern itself is not suffi-
cient to fix the number of NGBs and the additional infor-
mation on the ground state, p, is required [3]. Here and
hereafter, whenever we refer to broken generators Q,, we
mean suitable large-volume limits limyqe [, dxj5(x),
where j%(x) is the Noether charge density and d is the
spatial dimension.

In the case of spacetime symmetries, however, the count-
ing of NGBs is more subtle. Even for Lorentz-invariant
systems, some examples elude the above rule for internal
symmetries, e.g., spontaneously broken conformal and
scale invariance [4]. There is an empirical prescription
called inverse Higgs mechanism that allows one to identify
possible constraints that can be imposed among NGBs [5],
while it does not dictate if they should be imposed. Little is
known for theories without Lorentz invariance.
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In this Letter, we propose a simple criterion to determine
what redundancies exist among NGBs in a given system.
Redundancies can arise for two separate reasons: (1) spe-
cial property of the ground state annihilated by a linear
combination of symmetry generators, and (2) identities
among Noether charge densities. It is complementary to
the inverse Higgs mechanism because our criterion
requires redundancies.

This result was inspired by the work by Low and Manohar
[6], which pointed out that a local transformation of differ-
ent symmetries may lead to the same field configurations.
But they did not clearly distinguish the classical field con-
figurations and quantum states and operators, and restricted
themselves to Lorentz-invariant systems. We need to gen-
eralize their intuition and formulate it more concretely.

Noether constraints.—A symmetry is spontaneously bro-
ken if its generator Q, (a = 1,..., ngg) has an order pa-
rameter (0|[Q,, ®,(y)]|0) # 0. By inserting a complete set
of states, one finds the existence of gapless states |7Tﬁ> such
that (7 5(p)| j2(x)|0) # 0forsome a and lim;_oEg(p) = 0.

We first point out that this general theorem immediately
tells us the NGBs are redundant if a linear combination of
Noether currents annihilate the ground state for nonzero
coefficients c,,

[ 53 cu210) =0 3)

We call them Noether constraints. In general, the coeffi-
cients c,(x) are spacetime dependent. To see the redun-
dancy, we use proof by contradiction. Suppose that all
|77 p)s are linearly independent to each other. If we multiply
3 glm )| on the above equation,
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Because (7 4j9(x)|0) # 0, this relation is nothing but the
linear dependence among the NGB states and hence
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contradicts with our assumption. One can eliminate one of
these states by solving Eq. (4) and repeat the argument
on the remaining NGB states and Noether constraints.
This way, we can see that the would-be NGB states have
redundancies by the number of independent Noether con-
straints Eq. (3).

The rest of the discussion is how such Noether con-
straints arise in two general categories.

Internal symmetries.—Let us first look at a simple
example: Heisenberg ferromagnet. Our argument on inter-
nal symmetry assumes the translational invariance of
the ground state. Knowing that the order parameter is the
uniform magnetization, we consider the Hamiltonian H=
JXijySi* 8; — mB.Y;s,; and its ground state in which all
spins are aligned in the positive z direction. For any B, >0,
the raising operator S, = Y ,(s,; + is,;) must annihilate
the ground state, since otherwise S |0) has a lower energy
(—uB,) than the ground state. By taking the thermody-
namic limit and successively turning off the magnetic field
B, | 0, we obtain the Noether constraint,

D (54 + is,)|0) = 0. (5)

1

The states created by two broken charges, S, and S, are
hence not independent. Indeed, it is known that there is
only one magnon (quantized spin wave) state, consistent
with Eq. (2).

In general, it is common to introduce an external field for
each order parameter so that the selected ground state has a
proper thermodynamic limit. Therefore, for antiferromag-
nets, we should consider the limit of vanishing staggered
magnetic field to get such a ground state. As a result,
Eq. (5) is not satisfied and we can see S, and S, excite
independent NGBs.

A similar phenomenon has been discussed in a relativ-
istic field theory with a chemical potential [7]. The model
consists of a two-component scaler field ¢ (x) with U(2)
global symmetry generated by the Pauli matrices 7; and
the identity matrix 7. The field acquires the vacuum
expectation value, say, (0] /(x)|0) = (v, 0)7, breaking gen-
erators Q;, O,, and Q3 + Q, spontaneously. Because of
the chemical potential, (j9 + jJ)(x) also develops a non-
zero expectation value. By applying an external field to
this density, we can derive the Noether constraint
Jd?x(j9 + ij9)(x)|0) = 0, resulting in one less NGB than
the number of broken generators [7].

In order to generalize our argument to an arbitrary
internal symmetry group, let us consider a simple Lie
group G. (Since all Lie groups can be decomposed into
simple groups and U(l) factors, extension to the most
general case is straightforward.) We choose the basis
of generators in such a way that only j)(x) may have a
nonvanishing expectation value [8]. Let Q, (a =
1,...,rankG) be Cartan generators of G and Q+y=
Osr * iQ,; be raising and lowering operators such that

[Ql: Qi,a’] = iqa’Qi,tJ’ and qs > 0 (0- = 1: RS m) It
(01j9(x)|0) is nonzero, it serves as an order parameter
of spontaneously broken generators Q,g;. Hence, it
is legitimate to introduce an external field B; as
H = H — B,Q,, in addition to other external fields,
if necessary. Assuming the commutativity in taking van-
ishing limits for each external field, we obtain Noether
constraints

[ (0 + i%,)(6)]0) = 0 ©)

for o0 = 1,..., m. As a consequence, nygg reduces by the
number of constraints m.

If we rearrange the broken generators as Q, =
(O Oirs-+-» Omp> Oumi» - --), the matrix p defined in
Eq. (2) takes the block diagonal form where each 2 by 2
blocks reads limpyplimyo(0]9(0)|0)i(g,,/2)7,. Therefore,
the rank of p is precisely 2m, as predicted by the counting
rule Eq. (1).

Spacetime symmetries.—Another reason for redundan-
cies is when the Noether charge densities are linearly
dependent. Namely, 3, c,(x)j%(x) = 0 as an operator iden-
tity, and the redundancy is obviously independent of the
property of the ground state.

To illustrate the point, let us consider a simple crystal.
The Lagrangian or Hamiltonian is both translationally and
rotationally invariant, with six generators in three spatial
dimensions. A crystal spontaneously breaks all six sym-
metries. However, it is well known that there are three
gapless phonon excitations (two transverse and one longi-
tudinal), but no more. We are not aware of satisfactory
explanation for the lack of NGBs for rotational symmetries
in the literature.

The crucial observation is that the Noether charge
densities for translation T% and rotation R are
related by

ROi = GijkijOk. (7)

Therefore, what could have been NGBs for spontaneously
broken rotational symmetries are redundant with those
for spontaneously broken translational symmetries, hence
only three NGBs. Note that x' are parameters and not
operators in quantum field theories. The NGB in helimag-
nets [9] with the Dzyaloshinskii-Moriya interaction can
be understood in a similar manner.

A more nontrivial example is a superfluid. The matter
field changes its phase under the particle-number symme-
try U(1) as (%, t) — e (%, t), while it changes both
its argument and the phase under the Galilean boost by
velocity D, (%, 1) — eimo3=(/2ms*) gy (3 — Ht 1) (we set
h = 1). The order parameter (0| (%, 1)|0) = ¢y, hence
breaks one phase symmetry and three boost symmetries.
However, there is only one gapless excitation, namely, the
Bogoliubov mode. Recall that consideration of the
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spontaneously broken Galilean invariance is crucial to the
Landau’s criterion for superfluidity.

The lack of independent NGBs for Galilean symmetry
again can be seen in the operator identity that the Noether
current for the Galilean boost B'* is related to the U(1)
current as

B = (T — mx!j». (8)

Here and hereafter, the Greek index u refers to the
spacetime index, 0 = ¢, 1 = x,2 = y, 3 = z. It is straight-
forward to derive this identity from the Lagrangian
density £L=igte —(1/2m)Vyt- Vi — V(1 ). Since
the translational invariance is not broken in the superfluid,
T does not create a gapless excitation, while those
created by B and j° are linearly dependent, hence
redundant.

Vortex lattice.—Perhaps the most nontrivial example is
the redundancy among NGBs in a vortex lattice. Rotating
superfluids and atomic BEC form a triangular lattice of
quantized vortices [10], spontaneously breaking the
translational symmetry. It is known that the system
supports a soft collective oscillation with a quadratic
dispersion, so-called Tkachenko mode [11-14]. Since
the Tkachenko mode is often associated with an ellipti-
cally polarized lattice vibration, one may naively expect
the existence of the usual (Bogoliubov) phonon, which
corresponds to the fluctuation of the superfluid phase.
Until today, all prior works on the collective modes in
the system have been based on the hydrodynamic theory.
Although they seem to imply the absence of such a
gapless mode, the reason for the missing mode has
been left unclear.

To clarify the low-energy structure of the system, here
we construct an effective Lagrangian. In order to discuss
it from the symmetry-breaking point of view, we do not
take into account the inhomogeneity due to trapping
potential or the centrifugal potential. In other words, we
focus on the region where the trapping potential almost
cancels the centrifugal potential but still retains a finite
particle density. Our system thus can be rephrased as
bosons which couple to an effective uniform magnetic
field B.s = 2m{) /e as if they have a charge e.. The
effective Lagrangian for vortices in superfluids has been
discussed in several papers [15], but they did not discuss
the vortex lattice configuration. They also introduced
several fields in addition to NG degrees of freedom, which
is not suitable for our purpose.

Let us start with the standard Lagrangian [16],

_ltd — gty — 1%
L= St = bt = IVul?
Ve EPT Y ~ g2 ©

We restrict ourselves to two spatial dimensions and the
zero temperature. To go to the corotating frame with the

angular frequency Q) = O, one makes the substitu-
tion 9, — 9, — ) X X-V. Assuming a Bose-Einstein
condensate, we plug i = /ne % into the Lagrangian

and obtain

£= SN = ) — o IV — im X Dy’

m

VDY~ gt

Vn)? 1
= Ty — g g
8mn 2
1 .
= g[# — Ve (D)2, (10)

where V(%) = Vi (%) — (m/2)Q%x? and

. 1 - -
m = etot - _(vatot + m{) X )_C))Z
2m

In the third line (10), we integrated n out, keeping only
the leading term in the derivative expansion [17].

If we neglect the effective potential V4(X), as we do so
for the rest of the Letter, the Lagrangian possesses the
magnetic translational symmetry,

G E+ a1 = (F 1)emi0xa (11)

Because of the lack of Galilean invariance, the energy
momentum tensor no longer satisfies 7% = m . Instead,

T% = mj' — 2mQelx/ j°. (12)

In the vortex lattice system, both P! = [dxT% and N =
f d?xj° are spontaneously broken. However, according to
our general criterion, the operator identity Eq. (12) sug-
gests that 7% and j° do not produce independent NGBs.
We will explicitly verify this claim in the following.

In the presence of vortices, the phase 6, contains singu-
larities. We decompose 6, into the regular part 6., and the
vortex part Ogno; i.€., Oop = reg T Oging- Since O, is only
defined up to a smooth function, this decomposition is not
unique and we will fix the ambiguity later. Because of the
singularity, 6, does no longer satisfy dzﬁsing = 0. In fact,
(1/27) * d(dBgpe) ( is the Hodge dual) can be identified as
the vortex current jvortex [jcortex = (1/277) E#V/\aya/\esing]
that automatically satisfies the topological conservation
law d * jyorex = a,ujffortex = 0.

Now let us introduce a continuum description of the
vortex dynamics. Because the crystalline order breaks
the magnetic translation, we introduce fields X“ that
specify the position of the vortices. Here, we follow
the notation in Ref. [18]: X¢ is the Lagrangian coordi-
nate frozen on the lattice, while x' is the Eulerian
coordinate. We fix the relation between X“ and x' in
such a way that i(% 1) =% — X(% 1) represents the
displacement from the equilibrium position X.
The vortex current in the continuum description can be
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EXpI'CSSEd as jvortex = *(l/z)mOEaban A dX? (jf/Lortex =
(1/2)mye***€,,0,X9,X") [18] where my = —(mQ /)
[16] is the number density of the vortices in the
equilibrium.

By equating these two expressions for the topological
current, we have d(dfgy,,) = —m€Qe,,dX* A dX”, which
gives

by = —mQ e, XdX? + dy. (13)

A smooth function y corresponds to the ambiguity
mentioned above. We choose y = m{)e jkfok so that the
explicit coordinate dependence drops from the Lagrangian.
Assuming the triangular lattice and adding the corre-
sponding elastic energy Eq(0i) = (2C, + Cz)(ﬁ -u)? +
Cz(% X i1)? (in the notation of Ref. [13]), we arrive at our
effective Lagrangian,

1 -
-Eeff = §M2 - Eel(au)» (14)

,u=9reg—mﬁ-ﬁ><ﬁ
1 - R .
- %(Vﬁreg +2mQ X it — mQeu*Vul)?. (15)

The ground state of H — woN (N is the total number of
particles) is characterized as 0., = pot and i = 0. L
describes the dynamics of fluctuation ¢ = wot — 6., and
i = % — X. Similar expressions can be found in Ref. [19]
that discusses the vortex lattice in superconductors in a
different context, but its derivation is empirical in contrast
to ours based on symmetry and derivative expansion.

As a nontrivial test, let us derive hydrodynamic equa-
tions as the Euler-Lagrange equations of the effective
Lagrangian. Variation with respect to 6., gives the

continuity equation 9, j* = d,n + V- (nd) =0 [20],
where n = u/g and

v=— %(60% +2mQ X i — mﬂek,ukﬁul). (16)
Since we implicitly assumed that vortices are massless and
hence i does not have the kinetic term o i, the equation
of motion (EOM) of the displacement vector requires
the balance between the Magnus force and the elastic force
FMa_gnus + Fel = O, Whefe Fel = 6Eel/5ﬁ an FMagnus =
2mQ X j#9,X = 2mnQ X [ — (3, + 0 - V)iil. All of
these equations agree with those discussed in
Refs. [12,13] based on the linearized hydrodynamic theory,
which in turn verifies our effective Lagrangian. Note that
our expressions are fully nonlinear as required by the
symmetry, e.g., the third term in Eq. (16), beyond the
linearized expressions in their papers.

Let us analyze the low-energy collective mode in our
effective Lagrangian. If we keep only quadratic terms in
the fluctuation ¢ and i, the Lagranigan becomes

n . )
Loy = 5 0 5 [¢> — 20,0 + 2er,~ju1)2]

ch

— nomQ - i X ii — E. (). (17)

In order to compare our expressions to those in the literature,
we have eliminated g and u in terms of the equilibrium
density n, and the superfluid velocity ¢, by g = wo/ng
and wy = mc2. The remarkable feature of the effective
Lagrangian is the mass term —2mnyQ2%i>. Combined
with the second term, which makes u* and u” canonically
conjugate to each other, it explains the gapped mode with a
gap 2Q) in the spectrum [12,13]. This mode can be identified
as the collective mode with the cyclotron gap e Begs/m =
2() predicted by Kohn’s theorem [21].

Given the gap, one can safely integrate i out by using
EOM,

i

At the leading order in the derivative expansion, the
remaining Lagrangian is

no .
o [ s _
eff 2mc% ¢

C, o
2mn, Q7

(v2<p)2], (19)

which describes the Tkachenko mode with the dispersion
relation E(p) = /(C,/2mng)(c,/Q)p* + O(p*) [12,13].
The Tkachenko mode thus can be understood as the phase
oscillation, and the vortex lattice simply follows transverse
to the motion of the superfluid through Eq. (18).

After all, there is only one gapless mode in the vortex
lattice, as expected from our general criterion. In the
derivation, we introduced the redundant fields in our effec-
tive Lagrangian and observed a mass term « > for them.
An effective Lagrangian of crystal phonons does not
usually contain # without any derivatives, because the
invariance under the shift #’ = # + a prohibits it. This is
why we usually expect gapless phonons [22]. However, in
the current example, the appearance of the mass term does
not contradict with the symmetry—the original magnetic
translation is still exactly realized in our effective
Lagrangian Eq. (14) in a nontrivial manner,

W(x+ar)=uxrt +a, (20)

Oreg! (3 + @, 1) = 0,5 (%, 1) — mai - Q X [i(%,1) — 23] (21)

This symmetry also protects the quadratic dispersion rela-
tion of the Tkachenko mode; i.e., the lower-order term
o (Vg)?> cannot be generated by the renormalization
process in Eq. (19).

It is instructive to compare the vortex lattice with
a supersolid [18]. A supersolid exhibits a similar
symmetry-breaking pattern; namely, it breaks both the
(usual) translation and U(1) phase rotation. In contrast to
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the vortex lattice case, each of the d momentum operators
P! and the number operator N independently produces a
NGB, giving rise to d + 1 NGBs in total in d-space
dimensions. This is consistent with our criterion, since in
the case of the supersolid, the Galilean invariance [18]
(more precisely, the nonrelativistic general-coordinate in-
variance [23]) leads to T% = mji. Therefore, phonons
originated from the translational symmetry breaking and
Bogoliubov mode are not redundant.
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Note added.—Recently, the authors were informed of a
related preprint [24]. Although their approach is different
and limited to the example of crystals, their result is con-
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