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We examine distance record setting by a random walker in the presence of a measurement error � and

additive noise � and show that the mean number of (upper) records up to n steps still grows universally as

hRni � n1=2 for large n for all jump densities, including Lévy distributions, and for all � and �. In contrast,

the pace of record setting, measured by the amplitude of the n1=2 growth, depends on � and �. In the

absence of noise (� ¼ 0), the amplitude Sð�Þ is evaluated explicitly for arbitrary jump distributions and it

decreases monotonically with increasing � whereas, in the case of perfect measurement (� ¼ 0), the

corresponding amplitude Tð�Þ increases with �. The exact results for Sð�Þ offer a new perspective for

characterizing instrumental precision by means of record counting. Our analytical results are supported by

extensive numerical simulations.
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An upper record (record, for short) occurs at step n in a
time series if the nth entry exceeds all previous entries. The
statistics of record-breaking events in a discrete time series
with independent and identically distributed (i.i.d) entries
have been studied extensively [1–3]. Record statistics play
a major role in time series analysis, in diverse contexts,
including sports [4–7], biological evolution models [8,9],
the theory of spin glasses [10,11], models of growing net-
works [12], analysis of climate data [13–17], and quantum
chaos [18]. The quantity of central interest is the mean
number of records hRni up to step n. For a time series with
i.i.d entries, a striking universal result is that hRni � lnn for
large n [1], independent of the distribution of the individual
entries. However, this universal logarithmic growth breaks
down when the time series entries are strongly correlated,
the simplest example being the case of a random walk
where the time series represents the walker positions at
discrete time steps.

While the subject of random walks has an enormous
range of applications well beyond the original context of
diffusion and Brownian motion, its exploration in terms of
record setting is relatively recent. The basic question is as
follows: how often does a random walker, moving in
continuous space by jumping a random distance at each
discrete time step, set a distance record, i.e., advance
farther from the origin than at all prior steps? In other
words, how does the mean number of such record-setting
events grow with the number of steps? This is a natural
question in many different contexts, such as in the evolu-
tion of stock prices [19,20] and queueing theory [21]. In
the one-dimensional (1D) case, with pure diffusion, a
universally valid result was found [22] for the mean of
the upper record-setting events hRni, namely, that it equals

ð2= ffiffiffiffi
�

p Þn1=2 for large n, where n is the number of steps,

regardless of the length distribution of jumps (e.g., the
result holds even for Lévy flights). This square root growth
of hRni was also found numerically in two dimensions and
three dimensions. Considering a drift, an abrupt shift in the
scaling exponent from 1=2 to 1 was identified [23]. Exact
analytical results were also found in one dimension for a
random walker with arbitrary drift [24,25], and for con-
tinuous time [26] and multiple [27] random walkers. In the
latter case, the theoretical results agreed with an analysis of
multiple stocks from the Standard & Poor’s 500 index [27].
However, to apply these results to the interpretation of

real experiments, the notion of a record—‘‘advance farther
from the origin than at all prior time steps’’—requires
closer examination. Why? Because measurement error �
and noise � are unavoidable; for instance, � can be the
resolution of the detector while � can describe white noise
from an instrument reading. Ties become possible because
of the ‘‘fuzziness,’’ as discussed, e.g., in Refs. [17,28,29].
Hence, the following question arises: how does the pres-
ence of � or � affect the growth of hRni and the associated
record-setting pace? Related questions were raised in the
statistics literature, e.g., in terms of �-exceedance records
[30,31] and in the physics literature [29], but asymptotic
results are available only for time series with i.i.d entries.
The question has apparently never been raised in the
context of correlated entries such as random walks. Does

hRni � n1=2 scaling persist despite the presence of � or �
and for various jump length distributions? If so, how is

the amplitude of the n1=2 growth (hereafter, ‘‘amplitude’’)
affected? By way of preview, the universal growth expo-
nent of 1=2 holds but the amplitude carries the information
about error and noise in distinct ways.
We define a ‘‘one-sided’’ record (positive maximum)

so that the ith entry in a time series xi is a random
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walk, record-breaking event (record, for short) if it
exceeds all previous values in the sequence, i.e., if xi >
maxðx1; x2; . . . ; xi�1Þ. We henceforth interpret xi as the
distance of the random walker from the origin at the ith
time step. However, because of the presence of a (fixed) �,
we define xi to be a record (� record) only if it exceeds all
previous values in the sequence by, at least, �. Similarly,
accounting for noise, xi is a record-breaking event if, with
the addition of �, it exceeds all previous values in the
sequence. A subtlety is that in the presence of error, a
record can be defined as being larger—by the amount of
the error—than the last record, or than the last maximum,
the two being identical in the absence of error. Here, we
enumerate records larger than the previous maximum; this
is more amenable to theoretical development.

We focus first on the influence of �. Consider a discrete-
time sequence fx0 ¼ 0; x1; x2; . . . ; g, representing the posi-
tion of a 1D random walker starting at the origin x0 ¼ 0.
The position xm at step m is a continuous stochastic vari-
able that evolves via the Markov rule xm ¼ xm�1 þ �m,
where �m represents the jump at step m. The �m are i.i.d.,
each drawn from a symmetric and continuous jump density
fð�Þ. Note that although the �m’s are uncorrelated, the
xm’s are correlated. We are interested in the statistics of the
number of records Rn up to step n. A record occurs at step
m if xm � � � xk for all k ¼ 0; 1; 2; . . . ; ðm� 1Þ, where
� � 0 represents the measurement error. For � ¼ 0, the
statistics of Rn are known to be universal, i.e., independent
of the jump density fð�Þ [22]; the mean record number
hRni up to step n is [22]

hRni ¼ ð2nþ 1Þ 2n

n

 !
2�2n ���!

n!1
2

�1=2
n1=2: (1)

We now examine how hRni is affected by �. We define
an indicator �m ¼ f1; 0g with �m ¼ 1 if a record occurs
at step m and 0 otherwise. We call x0 ¼ 0 a record, i.e.,
�0 ¼ 1. Then the number of records Rn up to step n is
Rn ¼ P

n
m¼0 �m. We average this expression over different

histories. Because�m is a binary f1; 0g variable, its average
h�mi is just the probability that a record occurs at step m.
Hence,

hRni ¼
Xn
m¼0

h�mi ¼
Xn
m¼0

rmð�Þ; (2)

where rmð�Þ denotes the record rate, i.e., the probability that
a record occurs at step m. By definition, r0 ¼ 1, and
rmð�Þ ¼ Prob½xm � � � max½0; x1; x2; . . . ; xm�1��. Thus,
rmð�Þ is the probability of the event that the randomwalker,
starting at the origin, reaches xm at step m, while staying
below xm � � at all intermediate steps between 0 and m,
where one needs to finally integrate over all xm � �. To
compute this probability, it is convenient to change varia-
bles yk ¼ xm � xm�k, i.e., observe the sequence fykg with
respect to the last position and measure time backwards.
Then, rmð�Þ is the probability that the new walker

yk, starting at the new origin at k ¼ 0, makes a jump
� � at the first step and then subsequently up to m
steps stays above �, i.e., rmð�Þ ¼ Prob½y1 � �;
y2 � �; . . . ; ym � �jy0 ¼ 0�.
To compute rmð�Þ, we note that in the first step, the

walker jumps to y1 ¼ zþ � from y0 ¼ 0 where z � 0 and
subsequently up to (m� 1) steps it stays above the level �.
Writing yk ¼ zk þ �, we re-express rmð�Þ as

rmð�Þ ¼
Z 1

0
fðzþ �Þqm�1ðzÞdz; (3)

where qnðzÞ is the probability that a random walker, start-
ing initially at z, stays positive up to n steps. This persis-
tence probability qnðzÞ has been thoroughly studied in the
literature for random walks (see Ref. [32]) with an arbi-
trary jump density fð�Þ, and a general expression for its
Laplace transform is known as the Pollaczek-Spitzer for-
mula [33,34]. It states that

Z 1

0
dze��z

X1
n¼0

snqnðzÞ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s

p �ðs; �Þ; (4)

where �ðs; �Þ ¼ exp½�ð�=�ÞR1
0 lnð1� sf̂ðkÞÞ=ð�2 þ

k2Þdk� and f̂ðkÞ ¼ R1
1 fð�Þeik�d� is the Fourier transform

of the jump density fð�Þ. Note that when � ! 0, the
integral in Eq. (3) is just qmð0Þ. Thus rmð0Þ ¼ qmð0Þ.
From Eq. (4), one can show [32] that

P1
m¼0 qmð0Þsm ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s

p
, independent of the jump density. This is the

celebrated Sparre Andersen theorem [35]; when inverted it
simply gives

qmð0Þ ¼
2m

m

 !
2�2m:

When substituted in Eq. (2), it provides the universal result
[22] in Eq. (1).
However, we are interested in � > 0. To compute rmð�Þ

for large m in Eq. (3), we need the large m behavior of
qmðzÞ for a fixed z > 0. This can be extracted by analyzing
Eq. (4). One finds that the leading order behavior of the

right side of Eq. (4) near s ¼ 1 is simply ½�ð1; �Þ=���
ð1� sÞ�1=2. This means that qnðzÞ for large n, with fixed z,
must behave like qnðzÞ � hðzÞ= ffiffiffiffiffiffiffi

�n
p

. Substituting this on
the left side of Eq. (4) and analyzing the leading behavior
near s ¼ 1 shows that the left hand side of Eq. (4) behaves

as ~hð�Þð1� sÞ�1=2, where ~hð�Þ ¼ R1
0 hðzÞe��zdz is the

Laplace transform of hðzÞ. Comparing the left and right
sides of Eq. (4), we obtain, for large n,

qnðzÞ � hðzÞffiffiffiffiffiffiffi
�n

p with

~hð�Þ ¼
Z 1

0
hðzÞe��zdz ¼ 1

�
�ð1; �Þ; (5)

where �ð1; �Þ can be read off Eq. (4) as
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�ð1; �Þ ¼ exp

�
� �

�

Z 1

0

lnð1� f̂ðkÞÞ
�2 þ k2

dk

�
: (6)

Substituting the asymptotic behavior of qnðzÞ from Eq. (5)
in Eq. (3), we obtain, for large m, rmð�Þ � Uð�Þ= ffiffiffiffiffiffiffiffi

�m
p

,
Uð�Þ ¼ R1

0 dzfðzþ �ÞhðzÞ.
Finally, substituting this asymptotic behavior of rmð�Þ in

Eq. (2) and summing for large n, the mean number of
records is

hRni ���!
n!1Sð�Þn

1=2; Sð�Þ ¼ 2ffiffiffiffi
�

p
Z 1

0
fðzþ �ÞhðzÞdz:

(7)

This is the main exact result: for an arbitrary jump density

fð�Þ, the mean record number grows universally as n1=2 for
large n (as for � ¼ 0), while the amplitude Sð�Þ depends
nonuniversally on � insofar as it depends explicitly on
fð�Þ.

Although we have an exact expression for Sð�Þ for
arbitrary fð�Þ, its explicit evaluation for all � is difficult.
For instance, to compute it explicitly for arbitrary jump
density fð�Þ, we need to first compute its Fourier transform

f̂ðkÞ, evaluate �ð1; �Þ=� from Eq. (6), then invert the
Laplace transform Eq. (5) to obtain hðzÞ and finally per-
form the integral in Eq. (7) to determine the amplitude
Sð�Þ.

For the special (yet ubiquitous, e.g., free paths in
kinetics) case of an exponential jump density fð�Þ ¼
ðb=2Þ exp½�bj�j�, it is possible to evaluate the amplitude

Sð�Þ. Here, f̂ðkÞ ¼ b2=ðb2 þ k2Þ; substituting this in the
expression of �ð1; �Þ and integrating yields �ð1; �Þ ¼
ðbþ �Þ=�. Hence, ~hð�Þ ¼ ðbþ �Þ=�2. Inverting this
Laplace transform gives hðzÞ ¼ 1þ bz. Using this explicit
form of hðzÞ in the expression for Sð�Þ in Eq. (7) and
integrating yields an exact expression for the amplitude,
valid for all � � 0,

Sð�Þ ¼ 2ffiffiffiffi
�

p exp½�b��: (8)

Note that as � ! 0, one recovers the universal amplitude
2=

ffiffiffiffi
�

p
.

Consider next a jump density fð�Þ whose tail decays as
fð�Þ � exp½�j�ja� for large �, where a > 0. Substituting
this in the expression for Sð�Þ in Eq. (7), expanding for
large �, and using hð0Þ ¼ 1, one can show that for large �,
Sð�Þ � �1�ae��a

. For example, for the Gaussian distribu-

tion, fð�Þ ¼ e��2=2�2
=

ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

p
, one finds that

Sð�Þ ���!
�!1

ffiffiffi
2

p
�

�

�
e��2=2�2

: (9)

Finally, consider jump densities with power law tails
fð�Þ � j�j���1 for large � with �> 0. For Lévy flights,
0<�< 2, whereas for jump densities with a finite vari-
ance, �> 2. In this case, rescaling z ¼ �y in the

expression for Sð�Þ in Eq. (7) one gets Sð�Þ ¼
ð2= ffiffiffiffi

�
p Þ�R1

0 fð�ðyþ 1ÞÞhðy�Þdy. For large �, the domi-

nant contribution comes from the large argument of hðzÞ.
By analyzing ~hð�Þ in Eq. (5) for large �, we find that for

large z, hðzÞ � z�=2 for �< 2 and hðzÞ � z for � � 2.
Substituting this asymptotic behavior in Sð�Þ gives

Sð�Þ ���!
�!1

� ���þ	; (10)

where 	 ¼ �=2 for � � 2 and 	 ¼ 1 for � � 2. Thus, in
this case Sð�Þ decays as a power law for large �.
To test these analytical predictions we performed

Monte Carlo simulations for the three jump densities:
(i) fð�Þ ¼ ð1=2Þ exp½�j�j� (exponential, b ¼ 1),

(ii) fð�Þ ¼ ð1= ffiffiffiffiffiffiffi
2�

p Þ exp½��2=2� (Gaussian, � ¼ 1), and
(iii) fð�Þ drawn from a Lévy distribution with exponent
� ¼ 1, using Refs. [36–38]. While (i) and (ii) represent
normal Fickian diffusion, (iii) represents non-Fickian
(anomalous) diffusion, which can arise in diverse hetero-
geneous domains such as cells [39], cold atoms [40], and
disordered porous media [41,42].
Our simulations are conducted with an ensemble of

independent random walkers (5000 particles, each taking
106 steps), entering the 1D system at the origin, with step
jump lengths drawn independently from a given probabil-
ity density function (PDF). Each particle is moved from
step to step according to its actual (sampled) location,
without including �; � is added as a fixed fraction of the
mean [median, for (iii)] jump length, which is chosen as
unity. At each step, the particle location is calculated; the
current distance value must exceed the last maximum by at
least � to qualify as a new � record; otherwise we ignore it.

The simulations confirm the n1=2 scaling for the growth of
the mean number of � records, for all values of �.
Furthermore, the Monte Carlo simulations are compared
to the three analytical predictions for Sð�Þ in Eqs. (8)–(10),
in Fig. 1, showing excellent agreement. The amplitude
Sð�Þ decreases from its universal value Sð0Þ ¼ 2=

ffiffiffiffi
�

p
as

� increases, so that fewer records are counted as the error
increases. The decrease in Sð�Þ is steepest for the Gaussian
PDF and has a much slower decay for the Lévy PDF, in
complete agreement with theory. The slowing down in the
Lévy case is due to the anomalously skewed nature of the
PDF, with frequent small jumps and some enormous leaps;
as a consequence, potential records set by small jumps are
more prone to being eliminated by the � error. In contrast,
the Gaussian case displays a rapid decline with the increas-
ing error, due to the compactness of the PDF, so that large
jumps are rare and record events larger than the error are
rarer yet.
We now examine the influence of the measurement

noise �. Let fx0 ¼ 0; x1; x2; . . . ; xng represent the succes-
sive positions of the random walker. In this case, a
record is registered at step m if xm þN ð0; �Þ�x >
maxð0; x0; x1; . . . ; xm�1Þ, where N ð0; �Þ is a zero-mean
Gaussian random variable with standard deviation �.
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The term N ð0; �Þ�x mimics the measurement noise. The
noise is added for the purpose of record verification at each
step and is not accumulated to the actual sequence. An
analytical treatment analogous to that for � is not yet
available and we resort to numerical experiments, similar
to those for �, with the results shown in Fig. 2. We use the
same PDFs (i)–(iii) as before, with mean [median, for (iii)]
jump length �x ¼ 1.

While the scaling hRni � Tð�Þn1=2 for large n persists,
in stark contrast to the Sð�Þ, the amplitude Tð�Þ shown in
Fig. 2 is an increasing function of � for all jump densities.
Thus for � records, the noise yields false accounting of
records, rendering an apparent hRni larger than the actual
one. This spuriously large rate of record formation
increases with the magnitude of the noise and suggests
that it might be possible to infer the contribution of noise
in diffusion-type experiments by means of record count-
ing. One first estimates from an experiment the PDF of
the jump lengths, which can then be employed in random
walk simulations, to generate a curve for the amplitude
Tð�Þ (such as seen in Fig. 2). Returning to an ensemble of
experimental measurements in the real system, one deter-
mines T and then reads off the corresponding value of �
from the simulated Tð�Þ curve.
The ‘‘division of labor’’ discovered here, i.e., the uni-

versality of the scaling exponent, yet the contrasting
dependence of the amplitude on measurement error and
noise, suggests a rather different perspective on the notion
of instrumental precision, among other things. To illustrate,
consider implications of Eq. (8). Exponentially distributed
free paths are the hallmark of kinetic theory and light
scattering in random media, among others. Therefore, the
instrumental precision � of any such experiment can be
inferred (in units of the mean free path 1=b) via Eq. (8) by
means of simple record counting.
The results presented here illustrate the subtlety and

richness of record breaking and counting, in the presence
of instrumental error � and measurement noise �, in sys-
tems where the underlying process can be modeled by a
random walk. The decoupling of the growth exponent
(1=2, regardless of precision and noise) from the amplitude
(which depends on instrumental precision and noise in a
monotonic, contrasting, and PDF-dependent manner) is
significant. While the universality of the mean record

number persists, hRni � n1=2, the magnitude of the ampli-
tude carries the information about � and �.
Finally, we note that the above Monte Carlo simulations

were also performed on 2D and 3D orthogonal lattices.

The universality of the n1=2 record-setting scaling is robust
for all dimensions, and in all cases, the amplitudes dis-
played qualitative behaviors similar to those shown in
Figs. 1 and 2. Moreover, Monte Carlo simulations account-
ing for two-sided records (absolute distance) demonstrated

the same n1=2 behavior and similar qualitative behavior for
the dependence of the amplitudes on � and �.
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FIG. 2. Amplitude Tð�Þ as a function of the measurement
noise � for jump lengths (in one dimension) with Gaussian
(stars), exponential (squares; b ¼ 1), and Lévy (circles; �¼1)
PDFs. The curves represent quadratic fits c1 þ c2�
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FIG. 1. One-dimensional amplitude Sð�Þ versus measurement
error � with Gaussian (stars), exponential (squares; b ¼ 1),
and Lévy (circles; � ¼ 1) jump length PDFs. The curves
(dotted dashed, dashed, solid) are the corresponding analytical
results from Eqs. (9), (8), and (10) with, respectively, functional
forms ð ffiffiffi

2
p

=��Þ exp½��2=2�, ð2=�1=2Þ expð��Þ, and 0:69��0:51.
In the Lévy case, � ¼ 1, hence 	 ¼ �=2 ¼ 1=2, and the
theoretical prediction ���1=2 in Eq. (10) is consistent with
simulations.
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