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We report an experimental and theoretical analysis of the energy exchanged between two conductors

kept at different temperature and coupled by the electric thermal noise. Experimentally we determine, as

functions of the temperature difference, the heat flux, the out-of-equilibrium variance, and a conservation

law for the fluctuating entropy, which we justify theoretically. The system is ruled by the same equations

as two Brownian particles kept at different temperatures and coupled by an elastic force. Our results set

strong constraints on the energy exchanged between coupled nanosystems held at different temperatures.
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The fluctuations of thermodynamics variables play an
important role in understanding the out-of-equilibrium
dynamics of small systems [1,2], such as Brownian parti-
cles [3–7], molecular motors [8], and other small devices
[9]. The statistical properties of work, heat, and entropy
have been analyzed within the context of the fluctuation
theorem [10] and stochastic thermodynamics [1,2] in sev-
eral experiments on systems in contact with a single heat
bath and driven out of equilibrium by external forces or
fields [3–9]. In contrast, the important case in which the
system is driven out of equilibrium by a temperature
difference and energy exchange is produced only by the
thermal noise has been analyzed only theoretically on
model systems [11–19] but never in an experiment because
of the intrinsic difficulties of dealing with large tempera-
ture differences in small systems.

We report here an experimental and theoretical analysis
of the statistical properties of the energy exchanged
between two conductors kept at different temperature and
coupled by the electric thermal noise, as depicted in
Fig. 1(a). This system is inspired by the proof developed
by Nyquist [20] in order to give a theoretical explanation of
the measurements of Johnson [21] on the thermal noise
voltage in conductors. In his proof, assuming thermal
equilibrium between the two conductors, he deduces the
Nyquist noise spectral density. At that time, well before the
fluctuation dissipation theorem, this was the second
example, after the Einstein relation for Brownian motion,
relating the dissipation of a system to the amplitude of the
thermal noise. In this Letter we analyze the consequences
of removing the Nyquist’s equilibrium conditions, and we
study the statistical properties of the energy exchanged
between the two conductors kept at different temperature.
This system is probably among the simplest examples
where recent ideas of stochastic thermodynamics can be
tested, but in spite of its simplicity the explanation of the
observations is far from trivial. We measure experimen-
tally the heat flowing between the two heath baths and
show that the fluctuating entropy exhibits a conservation

law. This system is very general because it is ruled by the
same equations of two Brownian particles kept at different
temperatures and coupled by an elastic force [13,19]. Thus
it gives more insight into the properties of the heat flux
produced by mechanical coupling, in the famous Feymann
ratchet [22–24] widely studied theoretically [13] but never
in an experiment. Therefore, our results have implications
well beyond the simple system we consider here.
Such a system is sketched in Fig. 1(a). It is constituted

by two resistances R1 and R2, which are kept at different
temperature T1 and T2, respectively. These temperatures
are controlled by thermal baths and T2 is kept fixed at
296 K, whereas T1 can be set at a value between 296 and
88 K using liquid nitrogen vapor as a circulating coolant. In
the figure, the two resistances have been drawn with their
associated thermal noise generators �1 and �2, whose
power spectral densities are given by the Nyquist formula
j~�mj2 ¼ 4kBRmTm, withm ¼ 1, 2 (see Eqs. (2) and (3) and
Supplemental Material [25]). The coupling capacitance C
controls the electrical power exchanged between the

FIG. 1 (color online). (a) Diagram of the circuit. The resistan-
ces R1 and R2 are kept at temperature T1 and T2 ¼ 296 K,
respectively. They are coupled via the capacitance C. The
capacitances C1 and C2 schematize the capacitance of the cables
and of the amplifier inputs. The voltages V1 and V2 are amplified
by the two low noise amplifiers A1 and A2 [26]. (b) The circuit in
(a) is equivalent to two Brownian particles (m1 and m2) moving
inside two different heat baths at T1 and T2. The two particles are
trapped by two elastic potentials of stiffness K1 and K2 and
coupled by a spring of stiffness K [see text and Eqs. (3) and (4)]
The analogy with the Feymann ratchet can be made by assum-
ing, as in Ref. [13], that the particle m1 has an asymmetric shape
and on average moves faster in one direction than in the other.
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resistances and, as a consequence, the energy exchanged
between the two baths. No other coupling exists between
the two resistances, which are inside two separated
screened boxes. The quantities C1 and C2 are the capaci-
tances of the circuits and the cables. Two extremely low
noise amplifiers A1 and A2 [26] measure the voltage V1 and
V2 across the resistances R1 and R2, respectively. All the
relevant quantities considered in this Letter can be derived
by the measurements of V1 and V2, as discussed below. In
the following, we will take C ¼ 100 pF, C1 ¼ 680 pF,
C2 ¼ 420 pF, and R1 ¼ R2 ¼ 10 M�, if not differently
stated. When T1 ¼ T2, the system is in equilibrium and
exhibits no net energy flux between the two reservoirs.
This is indeed the condition imposed by Nyquist to prove
his formula, and we use it to check all the values of the
circuit parameters. Applying the fluctuation dissipation
theorem to the circuit, one finds the Nyquist’s expres-
sion for the variance of V1 and V2 at equilibrium, which
reads �2

m;eqðTmÞ¼kBTmðCþC0
mÞ=X with X ¼ C2C1 þ

CðC1 þ C2Þ, m0¼2 if m ¼ 1, and m0 ¼ 1 if m ¼ 2. For
example, one can check that at T1 ¼ T2 ¼ 296 K, using
the above-mentioned values of the capacitances and resis-
tances, the predicted equilibrium standard deviations of V1

and V2 are 2:33 �V and 8:16 �V, respectively. These are
indeed the measured values with an accuracy better than
1%; see Supplemental Material [25] for further details on
the system calibration.

The important quantity to consider here is the joint
probability PðV1; V2Þ, which is plotted in Fig. 2(a) at
T1 ¼ T2 and at Fig. 2(b) at T1 ¼ 88 K. The fact that the
axis of the ellipses defining the contour lines of PðV1; V2Þ
are inclined with respect to the x and y axis indicates that
there is a certain correlation between V1 and V2. This
correlation, produced by the electric coupling, plays a
major role in determining the mean heat flux between the
two reservoirs, as we discuss below. The interesting new
features occur of course when T1 � T2. Following are the
questions that we address for such a system: (1) What are
the heat flux and the entropy production rate? (2) How is
the variance of V1 and V2 modified because of the heat
flux? (3)What is the role of correlation between V1 and V2?
We will see that these questions are quite relevant and have

no obvious answers because of the statistical nature of the
energy transfer.
We consider the electric power dissipated in the resist-

ance Rm with m ¼ 1, 2, which reads _Qm ¼ Vmim where im
is the current flowing in the resistance m. The integral of
the power over a time � is the total energy Qm, dissipated
by the resistance in this time interval, i.e., Qm;� ¼R
tþ�
t imVmdt. All the voltages Vm and currents im can be

measured; indeed, we have im ¼ iC � iCm
where iC ¼

C dðV2�V1Þ
dt is the current flowing in the capacitance C

and iCm
¼ CmdVm=dt is the current flowing in Cm.

Thus rearranging the terms one finds that Qm;� ¼
Wm;� ��Um;�, whereW1;�¼

R
tþ�
t CV1ðdV2=dtÞdt,W2;� ¼R

tþ�
t CV2ðdV1=dtÞdt, and �Um;� ¼ ½ðCm þ CÞ=2� �

½Vmðt þ �Þ2 � VmðtÞ2� is the potential energy change of
the circuit m in the time �. Notice that Wm are the terms
responsible for the energy exchange since they couple the
fluctuations of the two circuits. The quantitiesW1;� andW2;�

can be identified as the work performed by the circuit 2 on 1
and vice versa [27–29], respectively. Thus, the quantityQ1;�

(Q2;�) can be interpreted as the heat flowing from the

reservoir 2 to the reservoir 1 (from 1 to 2), in the time
interval �, as an effect of the temperature difference. As
the two variables Vm are fluctuating voltages, all the
other quantities also fluctuate. In Fig. 3(a) we show the

FIG. 2 (color online). The joint probability log10PðV1; V2Þ
measured at T1 ¼ 296 K equilibrium (a) and out of equilibrium
T1 ¼ 88 KðbÞ. The color scale is indicated on the color bar on
the right side.
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FIG. 3 (color online). (a) The probability PðQ1;�Þ measured at
T1 ¼ 296 K (blue line) equilibrium and T1 ¼ 88 K (magenta
line) out of equilibrium. Notice that the peak of the PðQ1;�Þ is
centered at zero at equilibrium and shifted towards a positive
value out of equilibrium. The amount of the shift is very
small and is �kBðT2 � T1Þ. (b) The measured mean value of
hQ1;�i is a linear function of (T2 � T1). The red points corre-

spond to measurements performed with the values of the capaci-
tance C1, C2, C given in the text and � ¼ 0:2s. The other
symbols and colors pertain to different values of these capaci-
tance and other �: (black circles) � ¼ 0:4s, C ¼ 1000 pF,
(green left triangles) � ¼ 0:1s, C ¼ 100 pF, (magenta plus) � ¼
0:5s, C ¼ 100 pF. The values of hQ1;�i have been rescaled by the
parameter-dependent theoretical prefactor A, which allows the
comparison of different experimental configurations. The con-
tinuous blue line with slope 1 is the theoretical prediction of
Eq. (7). In the inset the values of h _Q1i (at C ¼ 1000 pF) directly
measured using PðQ1Þ (blue square) are compared with those
(red circles) obtained from the equality h _Q1i ¼ ð�2

1 � �2
1;eqÞ=R1,

as discussed in the text.
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probability density function PðQ1;�Þ at various tempera-

tures: we see that Q1;� is a strongly fluctuating quantity,

whose PðQ1;�Þ has long exponential tails.

Notice that although for T1 < T2 the mean value of Q1;�

is positive, instantaneous negative fluctuations can occur;
i.e., sometimes the heat flux is reversed. The mean values of
the dissipated heats are expected to be linear functions of
the temperature difference �T ¼ T2 � T1, i.e., hQ1;�i ¼
A��T, where A is a parameter-dependent quantity that
can be obtained explicitly from Eqs. (3) and (4) below.
This relation is confirmed by our experimental results, as
shown in Fig. 3(b). Furthermore, the mean values of the
dissipated heat satisfy the equality hQ2i ¼ �hQ1i, corre-
sponding to an energy conservation principle: the power
extracted from the bath 2 is dissipated into the bath 1
because of the electric coupling. This mean flow produces
a change of the variances �2

mðTmÞ of Vm with respect to the
equilibrium value �2

m;eqðTmÞ, i.e., the equilibrium value

measured when the two baths are at the same temperature
Tm. Specifically, we find �2

mðTmÞ ¼ �2
m;eqðTmÞ þ h _QmiR1,

which is an extension to two temperatures of the Harada-
Sasa relation [30] (see also Supplemental Material [25] for
a theoretical proof of this experimental result). This result is
shown in the inset of Fig. 3(b), where the values of h _Qmi
directly estimated from the experimental data [using the
steady state PðQmÞ] are compared with those obtained from
the difference of the variances of V1 measured in equilib-
rium and out of equilibrium. The values are comparable
within error bars and show that the out-of-equilibrium
variances are modified only by the heat flux. It is now
important to analyze the entropy produced by the total
system, circuit plus heat reservoirs. We consider first the
entropy�Sr;� due to the heat exchanged with the reservoirs,
which reads �Sr;� ¼ Q1;�=T1 þQ2;�=T2. This entropy is a

fluctuating quantity as both Q1 and Q2 fluctuate, and its
average in a time � is h�Sr;�i ¼ hQr;�ið1=T1 � 1=T2Þ ¼
A�ðT2 � T1Þ2=ðT2T1Þ. However, the reservoir entropy
�Sr;� is not the only component of the total entropy pro-

duction: one has to take into account the entropy variation
of the system, due to its dynamical evolution. Indeed, the
state variables Vm also fluctuate as an effect of the thermal
noise and, thus, if one measures their values at regular time
intervals, one obtains a ‘‘trajectory’’ in the phase space
(V1ðtÞ, V2ðtÞ). Thus, following Seifert [31], who developed
this concept for a single heat bath, one can introduce a
trajectory entropy for the evolving system SsðtÞ ¼
�kB logPðV1ðtÞ; V2ðtÞÞ, which extends to nonequilibrium
systems the standard Gibbs entropy concept. Therefore,
when evaluating the total entropy production, one has to
take into account the contribution over the time interval �,

�Ss;� ¼ �kB log

�
PðV1ðtþ �Þ; V2ðtþ �ÞÞ

PðV1ðtÞ; V2ðtÞÞ
�
: (1)

It is worth noting that the system we consider is in a
nonequilibrium steady state, with a constant external

driving �T. Therefore the probability distribution
PðV1; V2Þ [as shown in Fig. 2(b)] does not depend explicitly
on the time, and �Ss;� is nonvanishing whenever the final

point of the trajectory is different from the initial one,
ðV1ðtþ �Þ; V2ðtþ �ÞÞ � ðV1ðtÞ; V2ðtÞÞ. Thus, the total en-
tropy change reads �Stot;� ¼ �Sr;� þ �Ss;�, where we

omit the explicit dependence on t, as the system is in a
steady state as discussed above. This entropy has several
interesting features. The first one is that h�Ss;�i ¼ 0, and as
a consequence h�Stoti ¼ h�Sri, which grows with increas-
ing �T. The second and most interesting result is that
independently of �T and of �, the following equality
always holds:

hexpð��Stot=kBÞi ¼ 1; (2)

for which we both find experimental evidence, as discussed
in the following, and provide a theoretical proof in
Supplemental Material [25]. Equation (2) represents an
extension to two temperature sources of the result obtained
for a system in a single heat bath driven out of equilibrium
by a time-dependent mechanical force [6,31], and our
results provide the first experimental verification of the
expression in a system driven by a temperature difference.
Equation (2) implies that h�Stoti � 0, as prescribed by the
second law. From symmetry considerations, it follows
immediately that, at equilibrium (T1 ¼ T2), the probabi-
lity distribution of �Stot is symmetric, Peqð�StotÞ ¼
Peqð��StotÞ. Thus Eq. (2) implies that the probability

density function of �Stot is a Dirac � function when T1 ¼
T2, i.e., the quantity �Stot is rigorously zero in equilibrium,
both in average and fluctuations, and so its mean value and
variance provide a measure of the entropy production. The
measured probabilities Pð�SrÞ and Pð�StotÞ are shown in
Fig. 4(a). We see that Pð�SrÞ and Pð�StotÞ are quite differ-
ent and that the latter is close to a Gaussian and reduces to a
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FIG. 4 (color online). (a) The probability Pð�SrÞ (dashed
lines) and Pð�StotÞ (continuous lines) measured at T1 ¼ 296 K
(blue line), which corresponds to equilibrium and T1 ¼ 88 K
(green lines) out of equilibrium. Notice that both distributions
are centered at zero at equilibrium and shifted towards positive
value in the out of equilibrium. (b) hexpð��StotÞi as a function
of T1 at two different � ¼ 0:5s and � ¼ 0:1s. (c) Symmetry
function Symð�StotÞ ¼ log½Pð�StotÞ=Pð��StotÞ� as a function
of �Stot. The black straight line of slope 1 corresponds to the
theoretical prediction.
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Dirac � function in equilibrium, i.e., T1 ¼ T2 ¼ 296 K
(notice that in Fig. 4(a), the small broadening of the equi-
librium Pð�StotÞ is just due to unavoidable experimental
noise and discretization of the experimental probability
density functions). The experimental measurements satisfy
Eq. (2) as it is shown in Fig. 4(b). It is worth noting that
Eq. (2) implies that Pð�StotÞ should satisfy a fluctuation
theorem of the form log½Pð�StotÞ=Pð��StotÞ� ¼ �Stot=kB,
8�, �T, as discussed extensively in Refs. [1,32]. We
clearly see in Fig. 4(c) that this relation holds for different
values of the temperature gradient. Thus, this experiment
clearly establishes a relationship between the mean and the
variance of the entropy production rate in a system driven
out of equilibrium by the temperature difference between
two thermal baths coupled by electrical noise. Because of
the formal analogy with Brownian motion, the results also
apply to mechanical coupling as discussed in the following.

We will now give a theoretical interpretation of the
experimental observations. This will allow us to show the
analogy of our system with two interacting Brownian par-
ticles coupled to two different temperatures; see Fig. 1(b).
Let qm (m ¼ 1, 2) be the charges that have flowed through
the resistances Rm, so the instantaneous current flowing
through them is im ¼ _qm. A circuit analysis shows that
the equations for the charges are

R1 _q1 ¼ �q1
C2

X
þ ðq2 � q1ÞCXþ �1; (3)

R2 _q2 ¼ �q2
C1

X
þ ðq1 � q2ÞCXþ �2; (4)

where �m is the usual white noise, h�iðtÞ�jðt0Þi ¼
2�ijkBTiRj�ðt� t0Þ. The relationships between the mea-

sured voltages and the charges are

q1 ¼ ðV1 � V2ÞCþ V1C1; (5)

q2 ¼ ðV1 � V2ÞC� V2C2: (6)

Equations (3) and (4) are the same as those for the two
coupled Brownian particles sketched in Fig. 1(b) by con-
sidering qm the displacement of the particle m, im its
velocity, Km ¼ 1=Cm the stiffness of the spring m, and
K ¼ 1=C the coupling spring. With this analogy we see
that our definition of the heat flow Qm corresponds exactly
to the work performed by the viscous forces and by the bath
on the particle m, and it is consistent with the stochastic
thermodynamics definition [1,27,29,33,34].

Thus our theoretical analysis and the experimental
results apply to both interacting mechanical and electrical
systems coupled to baths at different temperatures. Starting
from Eqs. (3) and (4), we can prove (see Supplemental
Material [25]) that Eq. (2) is an exact result and that the
average dissipated heat rate is

h _Q1i ¼ AðT2 � T1Þ ¼ C2�T

XY
; (7)

with Y ¼ ½ðC1 þ CÞR1 þ ðC2 þ CÞR2�, and A ¼ C2=ðXYÞ
is the parameter used to rescale the data in Fig. 3(b).
To conclude, we have studied experimentally the statis-

tical properties of the energy exchanged between two heat
baths at different temperature that are coupled by electric
thermal noise. We have measured the heat flux and the
entropy production rate, and we have shown the existence
of a conservation law for entropy which imposes the
existence of a fluctuation theorem which is not asymptotic
in time. Our results, which are theoretically proved, are
very general since the electric system considered here is
ruled by the same equations as for two Brownian particles,
held at different temperatures and mechanically coupled.
Therefore, these results set precise constraints on the en-
ergy exchanged between coupled nano- and microsystems
held at different temperatures. We finally mention that for
the quantity Wi, an asymptotic fluctuation theorem can be
proved both experimentally and theoretically, and this will
be the subject of a Letter in preparation.
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