Comment on "Strangeness -2 Hypertriton"

In a recent Letter, Garcilazo and Valcarce [1] reported on a $\Lambda\Lambda N - \Xi NN$ coupled-channel three-body Faddeev calculation that binds ${}_{\Lambda\Lambda}{}^3$ n and ${}_{\Lambda\Lambda}{}^3$ H by about 0.5 MeV below the corresponding $\Lambda\Lambda N$ thresholds. This contrasts with *ab initio* $A \leq 6$ few-body coupled-channel calculations associating a loosely bound ${}_{\Lambda\Lambda}{}^4$ H with the onset of $\Lambda\Lambda$ hypernuclear binding [2]. Here, I argue that the S = -2 chiral constituent quark model (CCQM) interactions [3] that bind ${}_{\Lambda\Lambda}{}^3$ H [1], as well as the unobserved *H* dibaryon [4], overbind the uniquely identified NAGARA emulsion event of ${}_{\Lambda\Lambda}{}^6$ He [5] by more than 4 MeV, casting doubts on the predictive power of the CCQM for S = -2.

Listed in Table I are $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He})$ values obtained in two sets of $\alpha \Lambda \Lambda$ three-body calculations [6,7] which use identical $V_{\Lambda\alpha}$; the $V_{\Lambda\Lambda}$ from Ref. [7] are softer than the $V_{\Lambda\Lambda}$ from Ref. [6]. Within each set, $\Delta B_{\Lambda\Lambda}$ increases with increasing the strength of $V_{\Lambda\Lambda}$, as represented by the listed values of $-a_{\Lambda\Lambda}$. For $a_{\Lambda\Lambda}^{CCQM} = -3.3$ fm, corresponding to the decoupled $V_{\Lambda\Lambda}^{CCQM}$ [9], interpolation within the first set [6] suggests that $\Delta B_{\Lambda\Lambda}^{CCQM}({}_{\Lambda\Lambda}^{6}\text{He}) = 3.2 \pm 0.1 \text{ MeV},$ at variance with $\Delta B_{\Lambda\Lambda}^{exp}({}_{\Lambda\Lambda}^{6}\text{He}) = 0.67 \pm 0.17 \text{ MeV}$ [8]. Interpolation within the second set [7] results in a value larger by at least 1 MeV. Since $V_{\Lambda\Lambda}^{CCQM}$ [4] is softer than the $V_{\Lambda\Lambda}$ of Ref. [7], which is softer than the $V_{\Lambda\Lambda}$ of Ref. [6], $\Delta B_{\Lambda\Lambda}^{CCQM}({}_{\Lambda\Lambda}^{6}He)$ should be even larger. Furthermore, the inclusion of the Pauli-suppressed $\Lambda\Lambda - \Xi N$ coupling increases $\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He) by another 0.2–0.5 MeV [7], and probably by more in the CCQM, owing to its stronger coupling effects. Altogether, I estimate conservatively that $\Delta B_{\Lambda\Lambda}^{CCQM}({}_{\Lambda\Lambda}^{6}He) > 4.7 \pm 0.5$ MeV, overbinding ${}_{\Lambda\Lambda}^{6}He$ by more than 4.0 ± 0.5 MeV and thereby destroying the consistency among the bulk of $\Lambda\Lambda$ hypernuclear data [10].

The CCQM $\Lambda\Lambda - \Xi N$ coupled-channel interactions used in Ref. [1] are not unambiguously constrained by the scarce, imprecise free-space scattering data [11]. Figure 5 in Ref. [12] shows a variety of S = -2 interactions satisfying such constraints. In particular, there are no $\Lambda\Lambda$ scattering data to constrain $a_{\Lambda\Lambda}$. Recent analysis of the $\Lambda\Lambda$ invariant mass from the in-medium reaction $^{12}C(K^-, K^+\Lambda\Lambda X)$ [13] results in $a_{\Lambda\Lambda} = -1.2 \pm 0.6$ fm [14], consistently with $a_{\Lambda\Lambda} \sim -0.5$ fm from ${}_{\Lambda\Lambda}^{6}$ He [6,15], in disagreement with $a_{\Lambda\Lambda}^{CCQM} = -3.3$ fm. Furthermore, the very strong CCQM $\Lambda\Lambda - \Xi N$ coupling interaction, which leads to a bound H below the $\Lambda\Lambda$ threshold [4] and is also responsible for binding ${}_{\Lambda\Lambda}{}^{3}$ H, is at odds with the latest HAL QCD lattice-simulation analysis which locates the H dibaryon near the ΞN threshold [16]. For all these reasons, foremost for heftily overbinding $^{6}_{\Lambda\Lambda}$ He, the predictive power of the CCQM for S = -2,

TABLE I. $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}^{6}\text{He}) = B_{\Lambda\Lambda}({}_{\Lambda\Lambda}^{6}\text{He}) - 2B_{\Lambda}({}_{\Lambda}^{5}\text{He})$ (in MeV) from $\alpha\Lambda\Lambda$ calculations [6,7] with no $\Lambda\Lambda - \Xi N$ coupling, and scattering lengths $a_{\Lambda\Lambda}$ and effective ranges $r_{\Lambda\Lambda}$ (in fm) of the input $\Lambda\Lambda$ interaction $V_{\Lambda\Lambda}$. $\Delta B_{\Lambda\Lambda}^{exp}({}_{\Lambda\Lambda}^{6}\text{He}) = 0.67 \pm 0.17$ MeV [8].

	Ref. [6]	Ref. [7]	Ref. [7]				
$-a_{\Lambda\Lambda}$	0.31	0.77	2.81	5.37	10.6	1.90	21.0
$r_{\Lambda\Lambda}$	3.12	2.92	2.95	2.40	2.23	3.33	2.54
$\Delta B_{\Lambda\Lambda}$	0.79	1.51	2.91	3.91	4.51	4.12	8.29

including the prediction of a ${}^{3}_{\Lambda\Lambda}H$ bound state [1], is questionable.

A. Gal

Racah Institute of Physics The Hebrew University Jerusalem 91904, Israel

Received 7 January 2013; published 25 April 2013 DOI: 10.1103/PhysRevLett.110.179201 PACS numbers: 21.45.-v, 12.39.Jh, 21.10.Dr, 21.80.+a

- [1] H. Garcilazo and A. Valcarce, Phys. Rev. Lett. 110,
- 012503 (2013).
 [2] H. Nemura, S. Shinmura, Y. Akaishi, and K. S. Myint, Phys. Rev. Lett. 94, 202502 (2005).
- [3] A. Valcarce, H. Garcilazo, and T. F. Caramés, Phys. Lett. B 693, 305 (2010).
- [4] T.F. Caramés and A. Valcarce, Phys. Rev. C 85, 045202 (2012).
- [5] H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001).
- [6] I. N. Filikhin and A. Gal, Nucl. Phys. A707, 491 (2002); see also I. N. Filikhin, A. Gal, and V. M. Suslov, Phys. Rev. C 68, 024002 (2003), who discuss $\Lambda\Lambda - \Xi N$ coupling.
- [7] S. B. Carr, I. R. Afnan, and B. F. Gibson, Nucl. Phys. A625, 143 (1997); I. R. Afnan and B. F. Gibson, Phys. Rev. C 67, 017001 (2003). Both include $\Lambda\Lambda \Xi N$ coupling.
- [8] K. Nakazawa, Nucl. Phys. A835, 207 (2010).
- [9] H. Garcilazo (private communication).
- [10] A. Gal and D. J. Millener, Phys. Lett. B 701, 342 (2011).
- [11] J. K. Ahn et al., Phys. Lett. B 633, 214 (2006).
- [12] J. Haidenbauer and U.-G. Meißner, Nucl. Phys. A881, 44 (2012).
- [13] C. J. Yoon *et al.* (KEK-PS E522 Collaboration), Phys. Rev. C 75, 022201 (2007).
- [14] A. M. Gasparyan, J. Haidenbauer, and C. Hanhart, Phys. Rev. C 85, 015204 (2012); additional constraints are due to A. Ohnishi *et al.* (ExHIC Collaboration), Nucl. Phys. A, doi: 10.1016/j.nuclphysa.2013.01.083 (2013), who find $a_{\Lambda\Lambda} > -1.25$ fm from recent RHIC-STAR data.
- [15] I. Vidaña, A. Ramos, and A. Polls, Phys. Rev. C 70, 024306 (2004), who include $\Lambda\Lambda \Xi N \Sigma\Sigma$ coupling.
- [16] T. Inoue, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, N. Ishii, K. Murano, H. Nemura, and K. Sasaki (HAL QCD Collaboration), Nucl. Phys. **A881**, 28 (2012), who consider SU(3) flavor breaking, realistic S = -2 thresholds, and coupled-channel effects.