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Studies of coevolution of amino acids within and between proteins have revealed two types of
coevolving units: coevolving contacts, which are pairs of amino acids distant along the sequence but
in contact in the three-dimensional structure, and sectors, which are larger groups of structurally

connected amino acids that underlie the biochemical properties of proteins. By reconciling two
approaches for analyzing correlations in multiple sequence alignments, we link these two findings
together and with coevolving units of intermediate size, called ‘“‘sectons,” which are shown to provide
additional information. By extending the analysis to the co-occurrence of orthologous genes in bacterial
genomes, we also show that the methods and results are general and relevant beyond protein structures.
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The structural and functional properties of proteins
emerge from interactions between their amino acids.
During evolution, these interactions constrain the substitu-
tions of amino acids that may happen. Sequences resulting
from multiple independent evolutionary trajectories reflect
these constraints and, therefore, contain information about
the organization of interactions within proteins. Such
sequences are now made available by DNA sequencing
technology, which provides thousands of protein sequences
that have diverged independently and under similar selec-
tive pressures from a common ancestral sequence.

These protein sequences are commonly collected into
multisequence alignments on the basis of their sequence
similarity. An alignment is formally an M X L array X,
where X; indicates which of the A = 20 natural amino
acids is present at position i in sequence s; some positions
contain a gap, inserted to ensure an optimal alignment
and represented as a 21st amino acid. Typical numbers
are M ~ 10°-10* for the number of sequences and
L ~ 10?-10° for the length of the alignment.

The pattern of functional couplings between amino
acids may be inferred from the statistical correlations
between pairs of positions in the alignment. Analyses of
these correlations are complicated by several factors:
(i) proteins are gathered in an alignment based on sequence
similarity, with no guarantee to have been subject to com-
mon selective constraints; (ii) sequences are not sampled
independently during evolution but through a branching
process, which introduces a sampling bias; (iii) the infor-
mation content of the alignment, ~MLlog,A ~ 10°-10’
bits, is small compared to the number ~A%L?/2 ~ 10°-108
of continuous parameters defining the correlations between
every pair of amino acids, which implies a severe under-
sampling; (iv) two positions may be correlated while not
directly interacting, reflecting a fundamental difference
between interactions and correlations.

Standard statistical analyses identify the observed
samples to an asymptotically large number of independently
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and identically distributed random variables. Points
(1)—(iii) violate each of these assumptions, while point
(iv) suggests that, even in the absence of bias, further pro-
cessing is required to infer interactions from correlations.

Many approaches have been proposed to tackle these
challenges [1]. Recently, two methods have been devel-
oped, each rooted in a different concept of statistical
mechanics. In an extension of an approach called statistical
coupling analysis (SCA) [2], an application of concepts
from random matrix theory [3] to address (iii) has revealed
collective modes of coevolution named sectors [4]. A
protein sector is a group of structurally contacting posi-
tions, and experiments indicate that each sector controls
independently a biochemical property of the protein [4]. In
a different approach called direct coupling analysis (DCA)
[5], the problem (iv) of inferring interactions from corre-
lations was formulated and solved as a problem of inverse
statistical mechanics, leading to the inference of a large
number of pairs of positions in contact in the folded
structure [6].

The two approaches, SCA and DCA, differ in their
principles as well as in their results. Using the Pfam align-
ment for the trypsin family [7] as an illustrative example,
we show here how they can be connected at different
levels. Specifically, we show that (1) their respective mea-
sures of coevolution rely on distinct parts of the spectrum
of a same covariance matrix, (2) a parallel analysis of
the two measures of coevolution reveals different types
of coevolving units—previously identified sectors and
smaller units, which we call ‘“‘sectons,” and (3) these
coevolving units, and the contacting pairs from DCA,
stem from different aspects of the data but are interrelated,
with sectons and contacting pairs respecting the overarch-
ing decomposition into independent sectors.

Given a multiple sequence alignment, SCA and DCA
use as input the same basic statistical quantities: the fre-
quency f¢ of amino acid a at position i and the joint
frequency ff’j” of the pair of amino acids a, b at the pair

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.110.178102

PRL 110, 178102 (2013)

PHYSICAL REVIEW LETTERS

week ending
26 APRIL 2013

of positions i, j. Prior to defining these frequencies, some
steps must be taken to clean the alignment from positions
with excessive gaps and mitigate the effects of (i) and
(i1) by weighting differentially the contributions of the
various sequences. These steps are straightforward but
essential and may be common for both approaches (all
details are provided as Supplemental Material [8]).

The frequencies f‘jb and f¢ define a covariance matrix
Cyp = fab — fef?. SCA combines this matrix with a mea-
sure of amino acid conservation to define a matrix of
conserved correlations C; o while DCA relies on the inverse
J = —C"! of a regularized variant of C¢ (see below) to
define a matrix of direct information 2;; [8]. Inspired by
previous applications of random matrix theory to the study
of covariance matrices [3,9], we analyze here these two
matrices by a common method: (1) we compute the eigen-
vectors associated with the top k,,, eigenvalues; (2) we
rotate these eigenvectors into maximally independent com-
ponents, V('), e V(kmp), using independent component
analysis (ICA) [10]; (3) we define coevolving units as
sets of positions making largest contributions to a compo-
nent, S; = {i: V}k) > €}. The analysis involves two cut-
offs: the number k,,, of modes that is retained and a
threshold € > 0 of significance for the contribution of
positions to the components. The results, however, will
be shown to be insensitive to the exact values of these
cutoffs.

For the SCA matrix C;; [2], this analysis leads to
coevolving units called protein sectors [4]. They are rep-
resented in Fig. 1 for the alignment of the trypsin family,
using k,, = 4 and € = 0.1 (for simplicity, these sectors do

not include the positions i with Vl.(k) > € for multiple k; see
Fig. S1 [8]). Each sector forms a contacting group of
positions on the three-dimensional structure, despite not
necessarily consisting of consecutive positions along the
sequence. Sectors have no sharp boundaries but are typi-
cally organized into an onionlike hierarchy, with the

core of sector k consisting of positions i with largest y®

and layers associated with decreasing values of Vi(k), as
revealed by varying € and ki, (Figs. S2-S6 [8]). Three
sectors were previously inferred for the same protein fam-
ily using an alignment about 10 times smaller [4]: two, the
same green and red sectors, correspond to enzymatic ac-
tivity and specificity respectively (Table SI and Fig. S7
[8]); the third one, which had the peculiarity of a discon-
nected core, and which correlated experimentally with
stability, is now partly spread over two new sectors, whose
functional role remains to be characterized.

DCA leads to a matrix D;; of direct information, pre-
viously analyzed by ranking its entries [5]: In a number of
protein families, these top entries have been shown to
consist of pairs of positions in physical contact in the
three-dimensional structure [6] (contacts are defined here
by a distance <8 A). Most of these top pairs are, however,
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FIG. 1 (color online). Protein sectors in the trypsin family, as
inferred from the Pfam alignment PFO0089 [7]—(a) Projections
of the positions i along the vectors V¥ obtained by rotating by
ICA the top ki, = 4 eigenvectors of the SCA matrix C;; [2]:
Each dot corresponds to a position i, with coordinates (V,m s Vl@)
in the first graph and (Vi(3 ), Vi(4)) in the second. Sector k is defined
by the positions i with V¥ > e and V¥ < e for € # k, with
€ = 0.1. The positions of each sector are represented with a
different color: purple (k = 1), green (k = 2), red (k = 3), and
cyan (k = 4). (b) Location of the sectors on a three-dimensional
structure of trypsin [21]. (c) Location of the sectors along the
sequence (cut in two for readability), with nonsector positions in
white (numbering system of bovine chymotrypsin).

consecutive along the protein chain, due to the presence of
stretches of gaps in the alignment. To discard these trivial
contacts, we consider here a truncated matrix i)i j» where
D,;; = D;; if li — jl > A, and 0 otherwise, with A =5
(other values give consistent results; Figs. S8-S9 [8]). For
the trypsin alignment that serves here as illustration, the
top 79 entries of this matrix are found to be in physical
contact [Fig. 2(a) and Table SII [8]). The same figure
shows that these contacts are not unrelated to sectors but
respect the decomposition into independent sectors, with
top pairs of TND,» ; found within sectors, outside sectors, or at
the edge of sectors, but almost never intersecting two
sectors.

Instead of considering the top elements of f)i j» we also
analyze here its spectral properties, following the method
used to infer sectors from the SCA matrix C;;. This analysis
leads to a large number (~100) of independent compo-
nents, each localized on a small group of 2—4 positions,
which we call protein “‘sectons’ (Table SIIT and Fig. S10
[8]). Figure 3 shows the first eight sectons, using ki, =
120 and € = 0.2, but similar results are obtained for a
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FIG. 2 (color online). Relations between top pairs of @,-
sectors and sectons—(a) Fraction of top pairs ij of D,;, ranked
by decreasing value of i),- ;» that are within a sector (blue curve),
across two sectors (red), partly in a sector (green), and outside
sectors (yellow). The fraction of pairs not in contact (black)
becomes nonzero at rank 80 (zoom in inset). (b) Similar to (a),
but for sectons instead of top pairs, and with an extra curve
(dotted line) for the fraction of sectons that are not cliques, i.e.,
with two positions not directly in physical contact, but possibly
contacting through other positions in the secton. As top pairs of
D;;, sectons respect the decomposition into sectors. (c) Fraction
of contacting pairs within sectons of size 2 (blue) or size = 3
(green) that are top pairs of D, for the top 35 sectons that are
structurally connected. Contacts in sectons of size = 3 can be
partitioned into contacts associated with the 2 positions contrib-
uting most to the secton (cyan), which are nearly all top pairs of
D;;, and other contacts (red), of which only ~20% are top pairs
of j)i ;- (d) Fraction of the top 79 (black) or 120 (gray) pairs of
@,« ; contained in a secton: ~30% of these top pairs are not in a
secton.

J>

range of values of k, and e (Figs. S11-S12 [8]). As
indicated in Fig. 2(b), the first 35 sectons are structurally
connected. Out of these 35 sectons, 13 have size 2, 20 size
3, and 2 size 4 (Fig. S13 [8]). Figure 2(c) shows that
sectons of size 2 are top pairs of i),» ; (for technical reasons,
an exception is the first secton; see Fig. S12 [8]), but
sectons of size = 3 include contacting pairs that are not
top pairs of f)i ;- Reciprocally, Fig. 2(d) shows that ~60%
of the top pairs of j)i ; are not in the top sectons. Thus,
sectons and top pairs reveal different aspects of the corre-
lations (see also Table SIV [8]). Finally, Fig. 2(b) shows
that sectons are also consistent with the decomposition into
sectors, with almost no secton intersecting two sectors.
Only few sectons are well-recognized structural or func-
tional units: For the trypsin family, the top six sectons thus
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FIG. 3 (color online). Top protein sectons in the trypsin
family—each graph is a projection of the positions along (V®,
V&+1) " the components of order k and k + 1 obtained by
rotating by ICA the top eigenvectors of the truncated matrix of
direct information @ij. Sectons are defined by s, = {i: ka) > €},
with € = 0.2. The labeling of positions follows the numbering
system of bovine chymotrypsin (in several instances, positions
appear as superimposed), and the colors reflect the sectors as in
Fig. 1, with yellow for nonsector positions. The location of the
sectons on the three-dimensional structure is also indicated
(more sectons are shown in Fig. S10 [8]). Sectons s,, s4, s,
and s¢ are disulfide bonds, and s3 is the catalytic triad.

include four disulfide bonds [11], and the catalytic triad, a
group of three residues mediating peptide bond hydrolysis
and shared among several other protein families [12].
Characterizing the structural and/or functional roles of
other sectons is an open experimental challenge. Sectons
are found in other protein families [13], thus raising the
question of whether different families sharing a common
fold also share common sectons [14]. Sectons and sectors
are in any case distinct from previously recognized struc-
tural units such as secondary structures or “foldons” [15],
which consist of consecutive positions along the chain.
Formally, sectors and sectons originate from exclusive
parts of the spectrum of a common covariance matrix,
Cqp = fab — fef?, defined from the regularized frequen-
cies f¢=(1—u)f¢+u/(A+1) and fo=(1—p)fe?+
w/(A+ 1), where A = 20 is the number of amino acids.
A parameter u = 1/2 is introduced by DCA to define the
coupling matrix J = —C~! on which D;; = D;;[J] relies
[6]. This regularization is not required for SCA, but using
Cij = Cy[C] with u =1/2 instead of w =0, which
amounts to adding random sequences to the alignment,
does not alter significantly sector identification (Fig. S14
[8).If C = 3, |k) A, (k| denotes the spectral decomposition
of C in the bra-ket notation, with ordered eigenvalues A; =
- = ), we can decompose C as C = C* + C~, where
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Ct= D Akl and C™ = ) [k)Akl.
k=k* k>k*

With, for instance, k* = 100, the sectors inferred by SCA
from C,»j[C_’+] are indiscernible from those from C,-j[(_?]
(Fig. S14 [8]). On the other hand, using D,;[J~] with
J™ = =Y lk)A; (k| instead of D;;[J] in DCA [16],
not only do we recover the same contacts and sectons
(Fig. S15 [8]), but an additional ~20% of them are found
to be structurally connected (Fig. S16 [8]). The association
of sectors and sectons to different parts of the spectrum of
C relates to random matrix theory, which indicates that
both ends of the spectra of undersampled empirical covari-
ance matrices are statistically significant [9]. The spectral
decomposition, however, does not account per se for the
relation between sectors, contacts, and sectons, and it may
ultimately not be the most relevant decomposition of the
correlations.

The concepts and methods exposed thus far are not
limited to protein structures. Another example involving
biological sequences is the inference of functional cou-
plings between genes in a genome. A first-order approach
to this problem is to study the co-occurrence of genes in a
large number genomes, also known as their phylogenetic
profile [17]. The raw data are an M X L binary array x,;,
where x,; = 1 indicates that gene i is present in the genome
of species s and O that it is absent (A = 1 in this case).
Building such a data set requires mapping corresponding
genes across genomes: here we rely on the partition of
bacterial genes into clusters of orthologous genes (COGs)
[18], to obtain a data set consisting of M =~ 10° genomes
and L =~ 1.5 X 10° orthologous classes [8].
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FIG. 4 (color online). Correlated pairs and sectons in bacterial
genomes—(a) Fraction of pairs of genes from different func-
tional categories in the top pairs of D;; (dark red curve, with
lowest values for high ranks) or C;; = f;; — f,f; (dark blue): Up
to rank 1000, a plateau around 5% is observed in the first case,
and a continuous increase in the second. The two matrices share
some of their top pairs (Fig. S20 [8]), but, for instance, top pairs
of D;; initially contain more poorly characterized genes (light
red) than top pairs of C;; (light blue). (b) Fraction of sectons with
two or more genes from different functional categories (dark
red), and at least one poorly characterized gene (light red). In
gray, fraction with genes from different functional categories
after randomizing the content of the sectons, showing that
finding less than 10% of functionally mixed sectons is signifi-
cantly lower.

No structural data are available for comparison in this
case, but the classification of COGs into three broad,
nonexclusive, functional classes [18] (metabolism, cellular
processes, and information processing, with a fourth class
for poorly characterized genes [19]) indicates that the top
pairs of the matrix of direct information D;; are domi-
nantly composed of genes from a same functional class
[Fig. 4(a)]; these results are consistent with those previ-
ously derived from a similar approach [20]. As for protein
alignments, sectons can be defined that consist here of
small clusters, typically of 2—-6 genes (Figs. S17-S20 and
Table SV [8]). These sectons are mostly composed of
functionally related genes [Fig. 4(b)]; many sectons in
fact consist of different subunits of a same protein complex
(Table SVI [8]). Genomic sectors, involving larger groups
of correlated genes, may be defined as well, although their
significance is more difficult to assess (Fig. S21 and
Table SVII [8]).

In conclusion, we provided evidence that the contacting
pairs inferred by DCA [6] and the sectors inferred by SCA
[4] are two interrelated features of a common pattern of
coevolution, with coevolving units of intermediate size,
called sectons, providing additional information. A fully
unified mathematical framework for representing the
hierarchy of correlations in biomolecules remains to be
developed. Characterizing the structural, functional, and
evolutionary roles of patterns of coevolution is more gen-
erally a problem that extends beyond the scope of statisti-
cal studies of sequence data; in particular, experiments are
needed to assess the extent to which statistical patterns of
coevolution, inferred from a collection of sequences, are
reflected in individual biomolecules.
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