
Disorder-Assisted Melting and the Glass Transition in Amorphous Solids

Alessio Zaccone and Eugene M. Terentjev

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
(Received 10 October 2012; published 26 April 2013)

The mechanical response of solids depends on temperature, because the way atoms and molecules

respond collectively to deformation is affected at various levels by thermal motion. This is a fundamental

problem of solid state science and plays a crucial role in materials science. In glasses, the vanishing of

shear rigidity upon increasing temperature is the reverse process of the glass transition. It remains poorly

understood due to the disorder leading to nontrivial (nonaffine) components in the atomic displacements.

Our theory explains the basic mechanism of the melting transition of amorphous (disordered) solids in

terms of the lattice energy lost to this nonaffine motion, compared to which thermal vibrations turn out to

play only a negligible role. The theory is in good agreement with classic data on melting of amorphous

polymers (for which no alternative theory can be found in the literature) and offers new opportunities in

materials science.

DOI: 10.1103/PhysRevLett.110.178002 PACS numbers: 81.05.Lg, 61.43.Fs, 64.70.pj

The problem of describing the melting transition into a
fluid state [1–9] is complicated in amorphous solids by the
difficulties inherent in describing the elasticity down to the
atomistic level (where the thermal fluctuations take place).
It is well known that the standard (Born-Huang) lattice-
dynamic theory of elastic constants, and also its later
developments [10], breaks down on the microscopic scale.
The reason is that its basic assumption, that the macro-
scopic deformation is affine and thus can be downscaled to
the atomistic level, does not hold [11]. Atomic displace-
ments in amorphous solids are in fact strongly nonaffine
[11–14], a phenomenon illustrated in Fig. 1.

Recently, it has been shown [15] that nonaffinity could
play a role in the melting of model amorphous solids,
although the basic interplay between nonaffinity, thermal
expansion, and thermal vibrations is still not fully under-
stood. Previous models of the glass transition, such as
mode-coupling theories [16], have indicated that the
transition from a liquid into a glass is a consequence of
nonlocal slowing down of the dynamics. Theories which
build on this framework predict that the shear modulus G
of athermal hard-sphere colloids remains finite at the glass
transition [17] and that it jumps discontinuously to zero
upon decreasing the packing fraction �. Other analytical
[15] and numerical [18] works, instead, indicate that the
vanishing of G is continuous with T. This issue is not
resolved even now, with a new important experimental
study probably supporting the discontinuous transition
scenario [19], in contrast to the simulations of Wittmer
et al. [20], where a continuous critical lawG� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tc � T
p

is
reported. Here we should note that all these approaches,
however, are limited to central-force interactions and
therefore not strictly applicable to real amorphous materi-
als with covalent bonds.

Here we introduce a compact analytically tractable
model describing the melting of amorphous solids.

The model shows that the melting is driven by nonaffinity
of deformations and relies on counting the effective bond
connectivity, which in turn is affected by T via thermal
expansion. In contrast, we find that the contribution of
thermal vibrations to the shear modulus G is very low.
The model accounts for both central contact forces and
covalent bonds that have a bond-bending constraint. The
results offer a closed expression for GðTÞ and the glass
transition temperature, which are both in quantitative
agreement with classical experiment [21] on amorphous
polymer glasses. Also, our theory appears to reproduce the
continuous square-root criticality first found in the simu-
lations of Wittmer et al. [20].
Let us start from the basic assumptions of Born-Huang

lattice dynamics [2]. The free energy density of affine

FIG. 1 (color online). (a) If the deformation was affine, the
particles labeled with darker color would lie on the dashed lines
also in the deformed (right) frame. Because of nonaffinity, they
do not. (b) In a monatomic crystal lattice (left), the forces
(arrows) transmitted to any particle i by its nearest neighbors
cancel each other and f

i
¼ 0. In a disordered lattice (right), the

forces do not balance, and f
i
� 0 has to be balanced by a

nonaffine motion, in order to preserve the local mechanical
equilibrium.
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deformation is given by the following harmonic lattice
sum: FA ¼ ð1=2VÞPijð@2U=@r2ijÞR0

ðuAijÞ2, which runs

over all bonded atom pairs ij. Here UðrijÞ is the

pair-interaction potential, and the vector uAij ¼ rAij � Rij ¼
� � Rij denotes the affine displacement, with � the macro-

scopic strain tensor and Rij the bond vector in the unde-

formed frame. R0 is the equilibrium lattice constant in the
undeformed frame, at which one evaluates the lattice
spring constant � ¼ ð@2U=@r2ijÞR0

. Since our interest is in

the solid state, we focus on a shear strain �xy � �. The

lattice sum can be evaluated upon introducing the average
number of bonds per atom z, and in the affine approxima-
tion [22]: FA ¼ ð2=10�Þð�=R0Þ�z�2, where � ¼ vN=V
is the packing fraction occupied by the atoms in the solid.

In general, the (negative) contribution to F due to
thermal lattice fluctuations (phonons) is given by FT ¼
�kT ln

P1
n exp½�@!nðnþ 1=2Þ=kT�, where n labels the

eigenmodes. If kT � @!max, one can use the mean fre-
quency �! so that FT ¼ �ð3N=VÞkT lnðkT=@ �!Þ [9].
The contribution of the elastic energy can be written as
FT � �ð3N=VÞkT��2, where the nondimensional factor
� ¼ �ð@2=@�2Þ�!0 ln@ �!=kT has been demonstrated to

be of order unity when the harmonic potential dominates
the pair-interaction potential [9]. This gives a good esti-
mate: FT � �3ðkT=vÞ��2.

The number of bonds per atom z requires a careful
definition in amorphous systems. If there were only cova-
lent bonds, then z is obviously just equal to the number of
covalent bonds per atom, zco. However, in addition to
covalent bonds, weaker interactions can be present
between pairs of monomers in contact. Such interactions
are of van der Waals nature and could be modeled by the
Lennard-Jones (LJ) potential [23]. It is important to dis-
tinguish quantitatively between these contributions to the
total z ¼ zco þ zLJ, where we shall count a contribution to
zLJ when the two monomers are separated by r � rmin of
the LJ potential well; see Fig. 2. Later in the text, we shall
derive the explicit values for the two components contrib-
uting to z, from which we derive a quantitative form of

glass transition temperature and compare the model pre-
dictions with experiment [21].
Having defined the total z, we now need to relate it to T.

Upon introducing the thermal expansion coefficient �T ¼
1
V ð@V=@TÞ and replacing the volume V via � ¼ vN=V,

after integration we obtain lnð1=�Þ ¼ �TT þ const (later
we shall need to estimate this constant, obtaining
C� 0:48). Now z can be estimated as a function of � by
introducing the radial distribution function (rdf) gðrÞ.
Since the average connectivity due to covalent bonds
remains fixed, only the weaker contact bonds contributing
to zLJ are changing upon increasing the packing fraction �
by ��. The increment �z can be calculated in full analogy
with soft-sphere systems, where only the repulsive part
of the potential is active. This increment is given by [24]

�z� R1þ��
1 	2gð	Þd	, where 	 is the normalized center-

to-center distance. The rdf in the repulsive part is domi-
nated by gð	Þ � ffiffiffiffiffiffiffiffiffiffiffiffi

	� 1
p

, as shown in theory [24] and
simulations [25]. To keep things analytical, here we neglect
the thermal broadening of the rdf, which could be calcu-
lated only by using involved replica techniques [26]. This
particular simplification should still work for relatively
low-Tc polymer glassy systems, as we are going to verify
below, but certainly has to be adjusted when dealing with
inorganic glasses which have an order of magnitude higher
Tc. The increment �z has to be measured from the point
where the system is marginally stable, i.e., z ¼ zc at � ¼
�c, and from the integral we obtain z� zc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���c

p
.

In the affine approximation, the solid becomes margin-
ally stable only in the limit zc ! 0 and �c ! 0, and hence

we have z��1=2. Using the earlier relation between �

and �T we obtain z� e��TT=2. Substituting z and � in
FA þ FT we now can write the full expression for the shear
modulus in the affine approximation, GA ¼ @2ðFA þ
FTÞ=@�2, yielding

GAðTÞ ¼ 2

5�

1

R3
0

ð�R2
0e

�ð3=2Þ�TT � kTe��TTÞ: (1)

The Born criterion of melting [2] is given by Eq. (1) set to

zero: �R2
0 ¼ kTe�TT=2. We shall see later that �TT 	 1

and, remarkably, this relation reproduces the Lindemann
criterion [27], which uses equipartition to state that melting
occurs when the average vibrational energy of a bond
equals kT. It is also known that the Lindemann criterion
grossly overestimates melting temperatures for amorphous
solids [11]; in the same way, Eq. (1) cannot capture the
vanishing of rigidity as seen in the melting of glassy
polymers [21]. It turns out that to describe the melting of
amorphous solids one has to account for nonaffine defor-
mations in the lattice dynamics.
The shear modulus accounting for nonaffine deforma-

tions is derived in Ref. [28] as a lattice sum: G ¼ GA �
GNA ¼ GA �P

ifi
P

jH
�1
ij
f
j
, where H

ij
is the dynamical

matrix of the solid (Hessian) [29]. The vector f
i
measures

U

0

contributes to z

r

no contribution

rmin

LJ

contribute to zco

FIG. 2 (color online). Schematic of the criterion used to define
the contribution of the contact LJ interactions and covalent
bonds to the total number of mechanical bonds z. Only pairs
of particles that lie within the soft repulsive part of the LJ
potential contribute to the zLJ counting.
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the increment of force acting on an atom in response to the
deformation of its environment. It can be shown that for
harmonic pair potential and the xy-shear deformation [28]
f
i
¼ �R0�

P
jeije

x
ije

y
ij, where eij is the unit vector along

the bond connecting two atoms i and j. Since the sum runs
over bonds to the nearest neighbors j of the atom i, it is
evident that in many crystal lattices one finds a mirror
image for each bond [Fig. 1(b), left panel], causing can-
cellation in the sum and f

i
¼ 0, 8i. As a result, f

i
is

nonzero only in crystals with a lack of reflection symmetry
in unit cells—but most importantly in the presence of
disorder; see Fig. 1(b), right panel. The nonaffine correc-
tion to the elastic free energy then arises to ensure that local
mechanical equilibrium, which disorder tends to compro-
mise, is preserved upon deformation. In fully disordered
lattices the angular averaging of bond-orientation vectors
between harmonically bonded particles in the summation
leads to a simple result [30,31]:

G ¼ GA �GNA ¼ 2

5�

�

R0

�ðz� zcÞ: (2)

The nonaffine contribution is encoded in Eq. (2) in the
term proportional to zc which expresses the internal energy
required to fuel the nonaffine motions necessary for the
preservation of mechanical equilibrium against the effect
of disorder. With purely central interparticle interactions
in d dimensions, the shear modulus vanishes at zc ¼ 2d
(zc ¼ 6 in 3D), because the nonaffine term is proportional
to the number of degrees of freedom that can be involved in
the nonaffine energy relaxation. This is consistent with the
classical Maxwell criterion for marginal stability with
purely central forces: G� ðz� 6Þ. In general, zc defines
the critical coordination at which the lattice is no longer
rigid, because all the lattice potential energy is ‘‘spent’’
on sustaining the nonaffine motions and no energy is
left to support the elastic response to deformation. Using
again lnð1=�Þ ¼ �TT þ C, we arrive at lnð�c=�Þ ¼
�TðT � TcÞ. The corresponding relation z� zc �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���c

p
can be manipulated into

lnð�c=�Þ ¼ � ln½1þ ðz� zcÞ2=�c�: (3)

Combining this with the relation for �ð�TÞ, we obtain
ln½1þ ðz� zcÞ2=�c� ¼ �TðT � TcÞ and finally arrive at

the condition z� zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c½e�T ðTc�TÞ � 1�

q
. Substituting

it in Eq. (2), we obtain

GA �GNA ¼ 2

5�

�

R0

�ce
�T ðTc�TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c½e�T ðTc�TÞ � 1�

q
: (4)

According to this equation for the shear modulus GðTÞ,
nonaffinity alone (induced by disorder) causes the melting
at a critical point Tc with the scaling � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tc � T
p

, even
without the effects of thermal vibrations on the rigidity.
By including the effect of thermal phonons in the sameway
as was done in Eq. (1), the full expression for GðTÞ
becomes

G ¼ 2

5�

�
�

R0

�ce
�T ðTc�TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c½e�T ðTc�TÞ � 1�

q
� kT

R3
0

e��TT

�
:

(5)

To assess the interplay and relative magnitude of nonaffin-
ity and thermal phonons, it is important to have an expres-
sion for the critical point Tc in terms of parameters used in
this analysis. Since Tc is, in effect, the glass transition
temperature, the task of finding it explicitly for a general
system remains challenging. However, since our compari-
son will be with a particular experimental system of
polymeric glass, we can in fact offer an expression in
such a case.
For polymer chains of n units, the average connectivity

due to covalent bonds is close to 2: zco ¼ 2ð1� 1=nÞ,
while the total coordination number is z ¼ zco þ zLJ.
Unlike the LJ, which are central forces, the covalent bonds
put a constraint on the bond angle [32]. The classical
Phillips-Thorpe analysis of marginal stability [33,34] gives
the fraction of floppy modes f ¼ Nfloppy=3N in a purely

covalent network: f ¼ 1� 1=3½ð1=2Þzco þ ð2zco � 3Þ�,
where every zco-coordinated monomer contributes 2zco �
3 bending constraints, in addition to ð1=2Þzco stretching
constraints. We also need to add the LJ contact bonds into
the counting. However, for these only the stretching con-
straints apply. As a result, the fraction of floppy modes
becomes

f ¼ 1� 1

3

�
1

2
zco þ ½2zco � 3� þ 1

2
zLJ

�
: (6)

Keeping zco fixed, since it is T independent and fixed by the
polymer chemistry, we set f ¼ 0 in the above equation and
solve for the critical value of zLJ at the rigidity transition,
obtaining z
LJ ¼ 12� 5zco. Upon applying zc ¼ zco þ z
LJ,
we obtain the critical value of the total connectivity z at
which the rigidity is lost: zc ¼ 12� 4zco ¼ 12� 8ð1�
1=nÞ. In other words, in order for the amorphous polymer
assembly to become a solid glass, there need to be at least
z
LJ ¼ zc � zco ¼ 12� 5zco LJ bonds established per
monomer, in addition to the ordinary chain connectivity.
For very long chains, the glass solidifies when zc ¼ 4,
i.e., when each monomer acquires additional z
LJ ¼ 2
physical bonds.
Now we convert zc into the critical volume fraction �c,

via �c ¼ �

c ��zco, where �


c is the packing fraction in
the limit zco ¼ 0. If the attraction is weak or absent, as in a
system of hard spheres, then �


c ’ 0:64 as for the random
packing. Finally, using the expression for zcoðnÞ and �c ¼
expð��TTc � CÞ, and expanding the exponential to the
linear order since in all cases one expects�c close to 1, we
obtain an estimate for the glass transition temperature for
chains with degree of polymerization n:

Tc � 1

�T

ð1� C��

c þ 2�Þ � 2�

�Tn
(7)
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(the full expression will involve the logarithm, but we find
the linear-order expansion adequate). The first term is what
remains for very long chains (n � 2�=�T). The expres-
sion (7) provides a theoretical foundation for the empirical
dependence of the glass transition on n, first discussed by
Flory [35,36]. For common polymers, the experimental
values of the factor 2�=�T [35,36] are of the order of
103 K, and hence � ’ 0:1. If we take Tc ’ 383 K, as for
polystyrene glass used in the experimental comparison
below, this gives a reasonable value ofC ’ 0:48. This value
implies that � ’ 0:61e��TT , in dense amorphous polysty-
rene, justifying the expansion above.

In Fig. 3, we have plotted predictions of different theo-
ries for the shear modulus GðTÞ using the parameters of
amorphous polystyrene, taking n ¼ 200 [21]. It is evident
that nonaffinity is the main effect driving the melting
transition, whereas thermal phonons have practically no
effect on the qualitative behavior of the melting curve. If
nonaffinity is neglected, the transition would be shifted to
unrealistic, enormously high temperatures. Accordingly,
the main prediction of our theory, Eq. (5), has an interest-
ing behavior on approaching the glass transition from the
solid side: There is a square-root cusp singularity G�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

p
that is added to a small contribution due to

phonons. The origin of this scaling lies in the relationship
�z� ffiffiffiffiffiffiffi

��
p

arising from the integral of the rdf [24,25].
Exactly this singularity has been recently reported in nu-
merical simulations of the melting of colloidal glasses [20].

Finally, Fig. 4 shows the comparison of our theory
prediction for the melting of amorphous polystyrene with
the classical experimental data of Schmieder and Wolf
[21], reported also in Ferry’s monograph as representative
of the quasistatic, low-frequency GðTÞ in the glassy solid
state [37]. As discussed by Ferry, the catastrophic drop of
G at the critical point is the hallmark of the low-frequency
(static) response, whereas at higher frequency the drop
becomes more gradual.

The value of the fitting parameter, the spring constant
� � 52 N=m, is very sensible: It corresponds to the C-C

covalent bond enthalpy 350 kJ=mol over a distance of
0.15 nm, which is almost exactly the C-C bond length
(0.146 nm). More importantly, the theory can reproduce
the qualitative behavior of the experimental curve and the
criticality (that are found also with many other polymers
[21,37]) very well indeed. No alternative theory is available
in the literature for the mechanical response of amorphous
polymers at T < Tg (in contrast, at T > Tg, the reptation

theory of de Gennes, Doi, and Edwards [38] provides a good
understanding of viscoelasticity of polymer melts).
Plastic rearrangements may play an important role

across the transition when the local mechanical rigidity is
lost. These effects deserve more detailed investigation in
future studies, although they seem not to affect the com-
parison with the data in this case. A further caveat is about
our use of the harmonic interaction potential to estimate
the nonaffine contribution [39] which appears to define the
melting transition. It is a typical approximation used in the
theory of solids where the binding energy is strong; how-
ever, one expects anharmonic corrections to contribute to
the central LJ potentials near the glass transition point.
Accordingly, the accuracy of our theory at T ’ Tc could be
questioned, even though the agreement with simulations
and experiment is encouraging.
In practice, our theory can be used to reconstruct the

thermoelastic behavior of glassy polymers at T < Tg,

something which has not been possible so far, in the
same way as the Williams-Landel-Ferry theory [37] is
used for the viscosity at T > Tg. The theory may be

extended in the future to model the melting curves of
inorganic materials, such as amorphous oxides, semicon-
ductors, and metallic glasses, where the thermal phonons
play a more important role in view of the much higher Tc.
We are grateful for discussions and input of E. Scossa-

Romano and F. Stellacci. This work has been supported by
the Ernest Oppenheimer Fellowship at Cambridge.
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FIG. 3 (color online). Comparison of theoretical predictions
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