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We theoretically investigate the appearance of spatially modulated superconducting states in meso-

scopic superconducting thin-wall cylinders in a magnetic field at low temperatures. Quantization of the

electron motion around the circumference of the cylinder leads to a discontinuous evolution of the spatial

modulation of the superconducting order parameter along the transition line TcðHÞ. We show that this

discontinuity leads to the nonmonotonic behavior of the specific heat jump at the onset of super-

conductivity as a function of temperature and field. We argue that this geometry provides an excellent

opportunity to directly and unambiguously detect distinctive signatures of the Fulde-Ferrell-Larkin-

Ovchinnikov modulation of the superconducting order.
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Mesoscopic systems serve both as a platform to inves-
tigate fundamental quantum physics of solids and as a
testing ground for potentially transformative future devices
[1–5]. Of special interest in this context are interacting
systems exhibiting interplay of the collective emergent
properties with the quantum physics of single particles.
Small superconducting samples of nontrivial topology pro-
vide an example of such interplay since the global phase of
the pair condensate and the phases of single particle wave
functions respond differently to the applied magnetic field.

In mesoscopic superconducting rings of radius R� �0,
where �0 � vF=2�TcðH ¼ 0Þ is the superconducting co-
herence length, and vF is the Fermi velocity, this leads to a
doubling of the period of the oscillations of the transition
temperature Tc as a function of the magnetic flux �
through the ring, relative to the well-known Little-Parks
(LP) effect [5–7]. The small ring radius R implies that each
single electron state can be labeled by its angular momen-
tum n in units of @, and each particle acquires an additional
phase due to the magnetic flux � ¼ �R2H when circling
around the ring. In the absence of the field, the wave
function of the Cooper pair has a net zero angular momen-
tum, as the time-reversed states with n1 ¼ �n2 form a
bound state. In contrast, under the applied field the nonzero
quantum number l ¼ n1 þ n2 partially compensates the
net flux and maximizes the transition temperature Tc.
Therefore, for a small ring [7,8], Tc is a periodic function
of � ¼ �=ð2�0Þ with the flux quantum �0 ¼ hc=2e,
whereas for a large ring the periodicity is solely due to
the flux experienced by an electron pair with a charge of
2e; i.e., Tc is a periodic function of �=�0 (LP effect).

Under these assumptions, there is no overall suppression
of the maximal Tc value as the magnetic field increases: at
integer values of � the orbital coupling of the field to the
individual electrons can be fully compensated by the finite

angular momentum l of the Cooper pair. The destruction of
superconductivity in such a geometry must then occur via
paramagnetic (Zeeman) coupling of the electron spins to
the field, which raises the energy of the singlet bound state:
inclusion of this coupling is essential for developing a
complete picture. Consequently, in this Letter we consider
the combined effect of the orbital and Zeeman effect on
superconductivity and analyze a mesoscopic thin-walled
cylinder with the field along the axis. The cylinder geome-
try allows the formation of a spatially modulated [9,10]
(Fulde-Ferrell-Larkin-Ovchinnikov, FFLO) superconduct-
ing state that enables pairing under high Zeeman field. We
show below that (a) this state occurs even if the cylinder
is made out of materials where superconductivity is not
paramagnetically limited in the bulk, and (b) signatures
of such a state are much more prominent and easily iden-
tified in this geometry with R� �0 than in either bulk
materials or flat thin films, and therefore, mesoscopic
systems offer a unique chance to detect the FFLO state
that has remained elusive for the nearly 50 years since it
was first predicted.
Our main results are shown in Fig. 1. While at low fields

the variation of the transition temperature TcðHÞ is well
described by the Little-Parks (LP) periodicity, at higher
fields there is an extended region in which the supercon-
ducting order parameter is modulated along the cylinder
axis. Near the phase boundary TcðHÞ in this regime, the
superconducting phase exhibits alternating regions of
phase-modulated (FF) and amplitude-modulated (LO)
order; however, the LO phase becomes stable at lower T.
The wave vector qz of this modulation has nonanalytic
dependence on H, due to the interplay between the finite
size effects and the LP oscillations. The heat-capacity jump
at TcðHÞ varies dramatically along this sequence of tran-
sitions (in contrast to the smooth evolution at temperatures
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where the FFLO modulation is absent), enabling a direct
identification of the modulated states.

Although the possibility of FFLO states has been dis-
cussed in bulk materials such as the heavy-fermion super-
conductor CeCoIn5 [11–13] and organic superconductors
[14–17], it is difficult to design a ‘‘smoking gun’’ experi-
ment that unequivocally points towards such a state. In
real bulk systems, both orbital and paramagnetic coupling
suppress superconductivity, and inhomogeneity arises due
to both. The former effect leads to proliferation of the
vortices. Each vortex contains exactly one flux quantum
for the Cooper pairs �0, which corresponds to a 2� phase
winding of the superconducting order parameter around
the vortex core. In that sense, a thin-walled ring or cylinder
can be viewed as a coreless ‘‘supervortex’’ of multiple flux
quanta, with a phase winding 2�l. In contrast, paramag-
netic pair-breaking favors FFLO states. Recall that in a
singlet superconductor in the absence of Zeeman splitting
the Cooper pair comprises electrons in time-reversed
states, which have equal energies, and therefore are un-
stable towards the formation of a bound state. With para-
magnetic coupling, the states with opposite spins have
equal energies if they have a field-dependent momentum
mismatch q, and the modulation of the FFLO state origi-
nates from this finite center-of-mass momentum of the
Cooper pairs. On a one-dimensional (1D) ring, the pair
center-of-mass momentum is equivalent to the net phase
winding so that a different geometry is needed to distin-
guish the modulated states.

We consider a long hollow superconducting cylinder of
radius R and thickness d � �0, which in the absence of a
magnetic field is described by the Hamiltonian

H ¼ X
�;p

�ðpÞĉyp;�ĉp;� � �
X
q

B̂yðqÞB̂ðqÞ;

B̂ðqÞ ¼ 1

2

X
p;�;�

ð�i�yÞ�;�ĉ�pþðq=2Þ;�ĉpþðq=2Þ;�: (1)

Here ĉp;� is the annihilation operator for an electron with

momentum p and spin projection �, � is the strength of the
pairing interaction, and we assumed singlet s-wave super-
conductivity. For small R values, the motion around
the circumference of the cylinder is quantized, whereas
the momentum along the axis (z) is continuous, so that
p ¼ ðm=R; pzÞwithm integer, and the quasiparticle energy
takes the form

�ðpÞ ¼ 1

2M

�
p2
z þ

�
m

R

�
2
�
��; (2)

whereM is the electron mass and� is a chemical potential.
Here, the summation over the momenta meansP

p ¼ ½ð2�Þ2R��1
P

m2Z

R
dpz.

The magnetic field threading the cylinder along its axis
leads to a Zeeman splitting of the single particle energy

levels by HZ ¼ P
�;p�hĉ

y
p;�ĉp;�, where h ¼ �BgH, �B is

the Bohr magneton, and g is the g-factor of the quasipar-
ticles in the crystal. At the same time, the momentum
operator has to be replaced by its gauge-invariant counter-
part, p̂ ! p̂þ jejA. For our model of a thin-walled cylin-
der, the vector potential A ¼ �’̂HR=2, and ’ is the
azimuthal angle around the cylinder. Hence, jAj ¼ const
on the cylinder.

In the superconducting (SC) phase, the pair field�ðqÞ ¼
�hB̂ðqÞi, where h. . .i denotes the thermal average, acquires
a nonzero value. Because of the cylindrical geometry, �ðrÞ
can be expanded in the Fourier series

�ðrÞ ¼ j�0j
X
qz

X
l2Z

Cl;qze
il’eiqzz: (3)

The uniform SC state at H ¼ 0 only has C0;0 � 0, while a
single component Cl;0 with flux-dependent l � 0 charac-

terizes the SC transition under orbital coupling to the field
and gives rise to the Little-Parks effect. If the cylinder were
to unfold into a two-dimensional (2D) plane, l and qz
would become components of a 2D vector q, and in
response to a Zeeman field a state with q � 0 would be
realized. The cylindrical geometry is unique since l � 0
gives the magnetic flux through the cylinder, and therefore
the FFLO modulation is only along the axis, qz � 0. Near
the transition the linearized gap equations for different l,
jqzj decouple [18,19], and hence superconducting states
appear either with a single Cl;qz [phase modulated, �ðrÞ ¼
�0e

il’eiqzz, FF] or with Cl;qz ¼ Cl;�qz [amplitude modu-

lated, �ðrÞ ¼ �0e
il’ cosðqzzÞ, LO, see Fig. 1]. Thus, this

setting has an advantage over other ways to achieve FFLO
states (such as bulk paramagnetically limited supercon-
ductors, imbalanced fermionic atomic gases [20], or thin
SC films), in which modulation direction is arbitrary, and
therefore complex states may be favored [21–26].
To study the transition between the normal and SC states,

we use the Ginzburg-Landau (GL) expansion of the free

energy, F GL¼að2Þðl;qz;T;HÞj�0j2það4Þðl;qz;T;HÞj�0j4.

H

LO modulation q

ẑ

z

R

∆
z

H

T
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l=4

normal
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FIG. 1 (color online). Left: Superconducting thin-wall cylin-
der with a small radius R in a magnetic field parallel to the
cylinder axis (z axis). Sketch shows the spatial modulation of
the order parameter in the LO phase. Right: Phase diagram in the
H-T plane, showing regions of the normal phase, homogeneous
(qz ¼ 0) superconductor, and spatially modulated LO phase,
with phase-modulated FF states indicated by the shaded regions.
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At each H, l, qz, the temperature T where að2Þðl; qz; T;HÞ
becomes negative (if it exists) indicates a putative second-
order transition from the normal into the SC statewith given
values of l, qz. The highest of these temperatures is the
physical transition point TcðHÞ into a state with the corre-
sponding l, qz. The necessary condition for the continuous

transition is that the quartic coefficient að4Þ½l; qz; TcðHÞ; H�
remains positive at the transition point.

We evaluate the coefficients að2Þ and að4Þ using the
Green’s function formalism for the Hamiltonian in
Eq. (1) with the Zeeman and orbital coupling terms. We
note here that a similar setup was considered in Ref. [27]
using a phenomenological GL expansion that is valid only
in the long-wavelength modulation limit. Because of the
neglect of the field dependence of the coefficients of the
GL expansion, lack of connection with a microscopic
model Hamiltonian, and the assumption of a small modu-
lation wave vector, that approach failed to capture any of
the physics found in this Letter and led the authors of
Ref. [27] to focus on the fluctuation contribution to the
specific heat as the main observable. Our analysis below
shows that the ‘‘mean field’’ features of the transition,
when analyzed properly, strongly reflect the interplay of
the quantization of single electron motion and spatial
modulation of the SC order. We use a quasiclassical ap-
proximation for the normal state Green’s function

�hT	 ĉ �ðr; 	Þĉ y
�ðr0; 0Þi ’ T

X
"n

e�"n	G"n;�

� ðr� r0Þeijej
R

r0
r
ds�AðsÞ;

where the integral in the exponent is evaluated along a
straight line. This approximation smears out the even-odd
flux periodicity for a 1D ring, but this periodicity is already
broken by Zeeman coupling, and hence the approximation
is adequate for our goals. We obtain for the quadratic term

að2Þj�0j2 ¼
Z

dr��ðrÞ
�
1

�
� T

2

X
"n;�

X
p

K̂ð"n; �Þ
�
�ðrÞ;

K̂ð"n; �Þ ¼ G"n;�ðpÞG�"n;��ð�pþ�Þ; (4)

where G"n;�ðpÞ ¼ ½i"n � �ðpÞ þ �h��1 is the Fourier

transform of G"n;�ðrÞ, "n is a fermionic Matsubara fre-

quency, and � ¼ �irþ 2jejA. The full expression for
the quartic term is given in the Supplemental Material [28].
The effects due to small ring size R� �0 are contained

in the discrete sum over integers m in
P

p. We use the

Poisson summation formula [7]
P

m2Z
ðx�mÞ ¼P
k2Ze

i2�kx to elucidate these effects: k ¼ 0 gives the
continuum result for a 2D superconductor, and higher-
order terms k 	 1 account for the finite size corrections.
After a straightforward calculation, we find

að2Þðl;qz;T;HÞ ’ M

2�

2
4ln

�
T
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�
þc

�
1

2

�
�1

4

X
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1
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0

d’p

2�
c

�
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2
� is"
4�T
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�

þ2
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0
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cosð2�kRpF cosð’pÞÞ

X
n>0

0
@e�ðR=�0Þ�ð2nþ1Þkjcosð’pÞj

nþ 1
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�1

4

X
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2� is"

4�T ½2�h�vF �Q�

1
A
3
5;

(5)

where we defined the product

vF �Q¼ 2�Tc

�
�0qz sinð’pÞþ

�
l� �

�0

�
�0

R
cosð’pÞ

�
: (6)

Here, c ðzÞ is the digamma function and the Fermi mo-
mentum is pF ¼ ffiffiffiffiffiffiffiffiffiffiffi

2M�
p

. In the second line of Eq. (5), we
neglected terms of order T2

c=�
2. Because of the exponen-

tial decay of the terms with increasing k > 0 in the last
term of Eq. (5), below we keep only the first finite
size correction, k ¼ 1. We checked that incorporating
higher k contributions value does not qualitatively change
our results.

Figure 2 shows the upper critical field and the parame-
ters l, qz of the modulation of the superconducting order
parameter at transition. Hereafter, we consider �0pF ¼
100, and R ’ 3�0. In the cylindrical geometry, the inho-
mogeneous superconducting states emerge even for the
materials that do not support FFLO modulation in the
bulk: we present the results for the paramagnetic parameter

�M ¼ g�B�0=ð��2
0TcÞ ¼ 0:6, which corresponds to the

Pauli limiting fieldHP � 4Horb
c2 , so that the bulk material is

a conventional orbital-limited type-II superconductor. The
scalloped shape of the boundary of the superconducting
region is the consequence of the LP effect, and the overall
suppression of Tc with increased field is due to the para-
magnetic pair-breaking. Below a characteristic tempera-
ture, which is nonuniversal and different from the
T? ¼ 0:56Tc0 for bulk Pauli limited superconductors, the
inhomogeneous pairing along the cylinder axis (qz � 0)
becomes advantageous, and the FFLO state appears.
Figure 2 shows that the modulation wave vector qz along

the transition line exhibits a ‘‘sawtooth’’ pattern, quite
distinct from the uniform increase in q in the standard
picture of Pauli-limited superconductors. This feature
is due to the effective discretization of the modulation in
Eq. (6). For a 2D sheet, the role of the winding number l
is taken by a continuous variable qx, and it is the net

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ q2x

q
that ensures matching of the energy of the
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two electrons in a Cooper pair with the center of mass
momentum q. In contrast, in the cylindrical geometry the
choice of l is determined by the net flux�, and therefore, the
momentum qz adjusts to this selection and exhibits discon-
tinuities at the points where transitions between winding
numbers l and lþ 1 occur. The detailed balance between qz
and l depends on the finite size quantum correction term,
the second line in Eq. (5). Note that the prefactor of the first
nonvanishing k term, cos½2�RpF cosð’pÞ�, has the same

angle dependence in the momentum space as the LP
term, jl��=�0j cosð’pÞ=R, and is out of phase with the

FFLO modulation that enters with sinð’pÞ in Eq. (6).

Consequently, the details of the switching between
values of l and qz depend on the value of RpF (close to
integer vs half-integer), but the qualitative picture remains
unchanged.

The discontinuous behavior of the modulation qzðTÞ is
reflected in the experimental properties that allow unam-
biguous determination of the modulated state. Figure 3
shows the specific heat jump at the superconducting tran-
sition for different fields. We verified that the quartic term,

að4Þ½l; qz; TcðHÞ; H�, remains positive along the entire tran-
sition line, and therefore, the transition is always of second
order. The favored state is determined by comparing the
magnitude of the quartic term for the FF and the LO states:
A smaller value corresponds to the greater condensation
energy and a more stable phase. We find that in the vicinity
of the discontinuous drop of the modulation qz, the FF state
is favored and is superseded by the LO state as qz increases
within the realm of each fixed winding number l. The
specific heat jump at the transition is given by (we omit

full labels for brevity) �C=TcðHÞ ¼ ð½að2Þ�0Þ2=2að4Þ eval-
uated at TcðHÞ, where ½að2Þ�0 ¼ ð@að2Þ=@TÞ. The heat ca-
pacity exhibits significant enhancement on transitions
between different winding numbers. It is important to
note that this nonmonotonic behavior of the specific heat
jump only appears when the transition is into FFLO state,
at low temperatures and high fields. At higher tempera-
tures, when the transition is into the superconducting state
with qz ¼ 0, the specific heat jump at the transition varies
smoothly; see the inset of Fig. 3. The enhancement of the
specific heat jump in the hollow cylinder geometry can be
detected, for example, by the ac calorimetry technique, and
therefore can serve as experimental proof of the existence
of the FFLO-like modulations of the superconducting
order in mesoscopic cylinders.
It is likely that in the experimental realization of the

proposed geometry the superconductor will be disordered.
We checked that the modulated states and the nonmono-
tonic behavior of qzðTÞ are robust against moderate
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impurity scattering (Supplemental Material [28]). The
former result is consistent with the conclusions of
Refs. [29,30]. FFLO modulation disappears at strong dis-
order when transport becomes diffusive [31].

To conclude, we find novel spatially inhomogeneous
superconducting states, exhibiting both the Little-Parks
and FFLO phenomenology, can emerge due to the vector
potential and Zeeman coupling induced by a magnetic field
threading a thin hollow cylinder. Our principal motivation
was for conventional superconductors, for which the
coherence length can be well in excess of 1000 Å. In this
setting, the relevant sample sizes are experimentally ac-
cessible and we believe that the predicted variations in the
specific heat jump can be found under realistic conditions,
providing a possible smoking-gun experiment for detecting
the FFLO state. In principle, cold atomic gases in a cylin-
drical geometry and coupled to a light-induced artificial
magnetic field could realize a similar phase diagram and
FFLO state [32]. However, given the difficulty of directly
measuring the heat-capacity jump in a trapped cold atomic
gas, it may currently be easier to detect the effects in small-
size superconducting systems.
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