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Certain insulating materials with strong spin-orbit interaction can conduct currents along their edges or

surfaces owing to the nontrivial topological properties of their electronic band structure. This phenomenon

is somewhat similar to the integer quantum Hall effect of electrons in strong magnetic fields. Topological

insulators analogous to the fractional quantum Hall effect are also possible, but have not yet been observed

in any material. Here we show that a quantum well made from a topological band insulator such as Bi2Se3
or Bi2Te3, placed in contact with a superconductor, can be used to realize a two-dimensional topological

state with macroscopic many-body quantum entanglement whose excitations carry fractional amounts of

an electron’s charge and spin. This fractional topological insulator is a ‘‘pseudogap’’ state of induced

spinful p-wave Cooper pairs, a new strongly correlated quantum phase with possible applications to

spintronic devices and quantum computing.
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The recently discovered two-dimensional topological
insulators (TI) with time-reversal (TR) symmetry [1–4]
are band insulators related to integer quantum Hall states
in which electron spin plays the role of charge. They can be
obtained in HgTe, Bi2Te3, and Bi2Se3 quantum wells
owing to the strong spin-orbit coupling, and exhibit topo-
logically protected gapless edge states despite the spin
nonconservation [5]. The properties of quantum wells are
linked to the topologically protected surface states of the
extensively studied bulk materials [6–8].

Instabilities caused by interactions among electrons can
establish unconventional quantum states in TIs, with bro-
ken symmetries [9,10] or topological order [11–14]. These
envisioned forms of quantum matter could realize robust
macroscopic entanglement between spatially separated
electrons in the TI materials, which motivates both the
fundamental research and the quest for applications in
spintronics and quantum computing. Here we aim to real-
ize a new class of strongly correlated TIs that exhibit
phenomena reminiscent of the fractional quantum Hall
effect (FQHE) in strong magnetic fields, but without its
TR symmetry violation [15–22]. Such fractional TIs fea-
ture quasiparticles that carry fractional amounts of an
electron’s charge and spin. Exotic states with non-
Abelian statistics are also possible and promise the ability
to perform quantum computation with a greater level of
quantum control than in FQHE qubits, because both charge
and spin can be manipulated and entangled.

One approach to obtaining fractional TIs, inspired by the
FQHE, exploits Coulomb interactions among electrons in a
partially populated band made narrow by the spin-orbit
coupling [23–25]. It might be very difficult to find TI
materials with sufficiently narrow bands and strong inter-
actions, so the goal of this Letter is to propose a different
approach. Here we consider a heterostructure device in

which a two-dimensional electron gas can be tuned near
a quantum critical point (QCP). Every quantum critical
system is sensitive to relevant perturbations that impose
their energy scales on dynamics and define the phases that
surround the critical point in the phase diagram. We will
show that the spin-orbit coupling is characterized by a
large ‘‘cyclotron’’ energy, and thus indeed represents a
relevant perturbation that can dominate near the critical
point and stabilize fractional topological states just like a
strong magnetic field would. The proposed heterostructure
is not only routinely achievable, but also provides the best
platform to experimentally seek a variety of topologically
nontrivial superconducting and insulating quantum states
that have not been observed or hypothesized before, and
whose existence is guaranteed by the fundamental prin-
ciples discussed here.
We engineer a QCP by placing a TI quantum well in

contact with a conventional superconductor (SC) as shown
in Fig. 1. The SC’s pairing glue induces a weak short-range
attractive interaction between the TI’s electrons, but the
TI’s two-dimensionality assures the formation of bound-
state Cooper pairs for any interaction strength [26].
Electrons could then be pulled into the TI and immediately
bound into pairs by applying a gate voltage, causing a
bosonic mean-field quantum phase transition to a super-
conducting state in the TI [27–29]. The ensuing QCP could
naively occur in any pairing channel, but the conventional
proximity effect (order parameter leakage) washes out
such a QCP of singlets. Only triplet Cooper pairs, made
from two electrons in different TI’s hybridized surface
orbitals, are free to experience a true phase transition if
they can be energetically favored. This is where the TI’s
Rashba spin-orbit coupling steps in. It gives the triplets a
crucial boost, and then takes our system away from the
QCP as in Fig. 2(a). We will argue that the triplet
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superconductor in the TI is a vortex lattice of spin currents,
whose quantum melting induced by a gate voltage likely
yields a non-Abelian fractional TI.

This scenario can be derived from solid phenomenologi-
cal arguments alone. We will use the symmetries of the
minimal TI model to construct the effective action of the TI
affected by the SC. We will then explain why the triplets
form a vortex lattice, why such a vortex lattice is inevitably

melted by applying a gate voltage, and why the resulting
vortex liquid is a candidate for a fractional TI. At the end
we discuss the properties of the possible fractional TIs in
our system and limitations of our model.
The minimal model Hamiltonian of a noninteracting TI

quantum well can be written as [30,31]

H¼ðp��zAÞ2
2m

þ��x��; A¼�mvðẑ�SÞ: (1)

It describes four electron states per momentum p, labeled
by the spin projection Sz ¼ � 1

2 (in the @ ¼ 1 units),

and the orbital index �z ¼ �1 equivalent to the top or
bottom surface of the quantum well. The vector spin op-
erator is S ¼ 1

2�
ar̂a, a 2 fx; y; zg, and �a and �a are Pauli

matrices that operate on the spin and orbital states, respec-
tively. The static Yang-Mills SU(2) gauge field A
embodies the Rashba spin-orbit coupling [32] Hso ¼
vẑðS� pÞ�z and produces a massless Dirac spectrum if
� ¼ 0. However, intersurface tunneling � � 0 opens a
band gap, assuming that the model applies only to mo-

menta p <� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmvÞ2 � ð�=vÞ2p
. A natural cutoff � is

provided by the lattice potential in TI materials. Mass m
describes a small Dirac-cone curvature seen in ARPES
measurements [33]. Figure 2(b) shows that Eq. (1) ade-
quately approximates TI materials, with a relatively large
fitted m. This model has the relativistic particle-hole sym-
metry when � ¼ 0 and m ! 1. Its many-body ground
state is a band insulator for j�j< j�j, which is topological
when � has a proper sign [2].
The spin-orbit SU(2) gauge field from Eq. (1) carries a

nonzero ‘‘magnetic’’ Yang-Mills flux [34] (�; � . . . 2
ft; x; yg):

��¼����ð@�A�� i�zA�A�Þ¼1

2
ðmvÞ2��t�

z�z: (2)

Note that the SU(2) charge �z is required here by gauge
invariance. Being a generalization of theU(1)magnetic flux
responsible for the Hall effect, the SU(2) flux is the source
of topological phenomena in TIs and sets their ‘‘cyclotron’’
energy scale !� ¼ mv2. Our construction of the effective
action for interacting electrons will greatly benefit from
exposing the SU(2) gauge symmetry of the idealized model
[Eq. (1)]. At the end, we will discuss the consequences of
gauge symmetry violations in real materials.
The electron dynamics in the TI quantum well is altered

by the proximity to the SC in the device from Fig. 1. The
SC is a fully gapped quantum liquid of Cooper pairs
characterized by two energy scales, the pairing �p and

photon�� ¼ @c��1
L gaps, where c is the speed of light and

�L is the London penetration depth. Fermionic quasipar-
ticles have an anomalously small or vanishing density of
states below the pairing gap, which is �p ¼ 2@vf=	
 in

conventional superconductors with Fermi velocity vf and

coherence length 
. The smaller of the two gaps defines a
cutoff energy for the low-energy dynamics in the TI that
we shall discuss. The dynamics responsible for the triplet

FIG. 1 (color online). The heterostructure device that can host
fractional TR-invariant quantum states. A topological insulator
(TI) quantum well is sandwiched between a conventional super-
conductor (SC) and a conventional insulator (I). The gate (G)
voltage can be used to control the state of the TI, and the
topological properties of the TI can be probed via a Hall-bar
setup of leads (L).

FIG. 2 (color online). (a) The qualitative zero-temperature
phase diagram of attractively interacting electrons in a quantum
well. Gate voltage VG controls the electron gap in the quantum
well and tunes the quantum critical point (QCP) between a
superconductor (SC) and a bosonic Mott insulator (MI) of
Cooper pairs. The lowest energy excitations in the MI are charge
2e bosons, but they disappear at the crossover (dashed line) to
the band insulator (BI) where only gapped fermionic quasipar-
ticles with charge e exist. A spin-orbit coupling whose strength
is measured by a ‘‘cyclotron’’ energy !� (defined in the text)
introduces a vortex lattice in the superconducting state of spinful
p-wave Cooper pairs. Quantum melting of such a vortex lattice
gives rise to correlated ‘‘vortex liquid’’ (VL) states, which are
the prime candidates for fractional TIs. (b) The energy spectrum
EðkÞ of the Hamiltonian Eq. (1) for m� 2:5� 10�31 kg, v�
4� 105 m=s, and �� 100 eV (k ¼ p=@). This two-orbital ex-
ample approximates the ARPES spectrum from Fig. 3(d) of
Ref. [33] when � ¼ 0. (c) The Cooper pairing channels in the
TI include intraorbital spin singlets (��), interorbital spin
singlets (�0), and interorbital p-wave spin triplets (�m, where
m 2 f0;�1g is the z-axis spin projection).
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superconductor-insulator transition in the TI is indeed
defined below this cutoff and hence can be captured by a
two-dimensional effective theory whose degrees of free-
dom are decoupled from those of the SC. We will show
that the resulting theory indeed features a triplet
superconductor-insulator transition inside the TI across
which �p � 0.

Our effective TI model is given by the imaginary-time
action S ¼ R

d~tdr2c yð@0 þHÞc þ Sint. Living near the

conventional SC, all of the TI’s electrons couple to its
phonons and thus acquire BCS-like short-range attractive
interactions among themselves, irrespective of their spin or
orbital state. This is generic, but overcoming the Coulomb
repulsion in the TI requires a sufficiently strong pairing in
the SC and a sufficiently thin quantum well. Without
knowing the microscopic form and strength of these inter-
actions, we must consider all channels:

Sint ¼ 1

2

Z
d~td2rðU1c

y
��c

y
��0c ��0c ��

þU2c
y
��c

y
���0c ���0c ��

þU3c
y
��c

y
���0c ��0c ���Þ þ . . . (3)

Here � ¼ �1 and � ¼ �1 label the orbital �z and spin Sz

states of the electron fields c ��, respectively ( �� ¼ ��),
while the dots denote weak orbital-nonconserving forces.
By applying the Hubbard-Stratonovich transformation on
the path integral, we can eliminate the interaction cou-
plings [Eq. (3)] in favor of six Cooper pair fields displayed
in Fig. 2(c), i.e., two intraorbital singlets �� (U1), two
interorbital Sz ¼ �1 triplets �� (U2=3 at �¼�0), and

an interorbital singlet �0 and Sz¼0 triplet �0 (U2=3 at

���0):

S0int¼
Z
d~td2r

� X
�¼�1

ðuj��j2þ�����0c y
��c

y
��0 þH:c:Þ

þu0j�0j2þ�0

1ffiffiffi
2

p ðc y
þ"c

y
�#�c y

þ#c
y
�"ÞþH:c:

þ X
�¼�1

ðvj��j2þ��c
y
þ�c

y��þH:c:Þ

þv0j�0j2þ�0

1ffiffiffi
2

p ðc y
þ"c

y
�#þc y

þ#c
y
�"ÞþH:c:

�
: (4)

The symmetry transformations of these fields are summa-
rized in Table I. In conjunction with Eq. (1), the SU(2)
symmetry would imply v ¼ v0.

Fermionic excitations remain gapped across the
superconductor-insulator quantum phase transition in sim-
ple two-dimensional band insulators with attractive inter-
actions [28], and we will explain shortly why this also
holds in TIs. Then, we may integrate out the gapped
fermion fields in the path integral to obtain a purely
bosonic effective action Seff that describes Cooper pair
dynamics at energies below the pairing gap. We can avoid
a complicated calculation by relying on symmetries to

construct the Landau-Ginzburg form of Seff . Since two
electrons with the same spin from different orbitals have
the same cyclotron chirality, the Cooper pairs �� with
Sz ¼ �1 possess the SU(2) charge, unlike the singlet
fields. Together with �0 they form a triplet � ¼
ð��; �0; �þÞ that minimally couples to the same SU(2)
gauge field A as Eq. (1) but expressed in the S ¼ 1
representation. This can be seen from the local SU(2)
transformations in Table I. Therefore,

Seff ¼
Z

d~td2rf�y@0�þ ðr�ÞyK̂sðr�Þ þ�yt̂s�

þ �y@0�þ Ktjðr� iAÞ�j2 þ ðtt þ�y t̂0s�Þj�j2
þUtj�j4 þUs;�1�2�3�4

�y
�1
�y

�2
��3

��4
��y

s �

� �s�
yg: (5)

Some Cooper pair modes may have energy in the two-
electron continuum, and should be expelled from Seff . We
omitted Coulomb interactions, and used the most general
nonrelativistic dynamics. We organized the singlet fields
into a vector � ¼ ð��; �0; �þÞ and wrote their quadratic
couplings in the matrix form. The vector�s depends on the
SC’s order parameter and the SC-TI interface. The singlet

matrices K̂s, t̂s, t̂
0
s and tensor Ûs are TR invariant, and

realistic SU(2) symmetry violations can be captured by
additional triplet couplings.
Interorbital triplets compete with singlets. One of the

intraorbital singlet channels has a stronger induced inter-
action than all interorbital channels for geometric reasons,
which naively means that singlets should condense before
triplets when electrons are drawn into the TI from the SC
by the gate voltage. Here we neglect the intrinsic singlet
condensation due to �s�0, made small by the TI’s band
gap. However, the Rashba spin-orbit coupling inA� mixes

the triplets into two helical modes, analogous to the Dirac
conduction and valence band eigenstates of Eq. (1). One
helical mode has energy that decreases when its momentum
grows (like the Dirac valence band), and thus ‘‘always’’
condenses at sufficiently large momenta according to
Eq. (5). It has a natural advantage over singlets despite its
origin in the weaker induced interaction.

TABLE I. The symmetry transformations of electron c ��,
singlet �n and triplet �m fields in Eq. (4). W and U are SU(2)
transformation matrices expði�aaÞ with SU(2) generators �a,
a 2 fx; y; zg in the S ¼ 1

2 and S ¼ 1 representations, respectively.

(�a are related to the spin matrices Sa ¼ @�a. Also, �, � ¼ �1;
n, m 2 f�1; 0g; �l � �l.)

c ��ðkÞ �nðkÞ �mðkÞ
T r translations c ��ðkÞ �nðkÞ �mðkÞ
R rotations c ��ðRkÞ �nðRkÞ �mðRkÞ
Ri spatial reflect. c � ��ðRikÞ ��nðRikÞ � �mðRikÞ
I t time reversal �c y

� ��ð�kÞ ��y
n ð�kÞ ð�1Þm�y

�mð�kÞ
C charge U(1) eic ��ðkÞ ei2�nðkÞ ei2�mðkÞ
S spin U(1) ei�c ��ðkÞ �nðkÞ ei2m�mðkÞ
Local spin SU(2) W��0c ��0 ðkÞ �nðkÞ Umm0�m0 ðkÞ
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The helical condensate locally gains Rashba energy
ẑðS� pÞ< 0 in Eq. (5) by coupling to A� the TR-

invariant currents of properly oriented spin (perpendicular
to the current flow). Such a state is globally in equilibrium
only if the currents flow in loops. The optimal configura-
tion is always a vortex lattice [35,36], illustrated in Fig. 3,
and its existence also gives birth to fractional TIs. Imagine
tuning the gate voltage to reduce the superconducting stiff-
ness �s toward zero. The vortex kinetic energy due to
zero-point quantum motion can be estimated from the
Heisenberg uncertainty as Ekin � l�2

� =mv, where l� is the

SU(2) ‘‘magnetic length,’’ and mv is the effective vortex
mass. In (charged) superconductors, mv is roughly con-
stant as �s ! 0, but turns into mv � j logð�sÞj when the

screening length �L � ��1=2
s diverges [37]. The potential

energy due to the vortex lattice stiffness scales as Epot � �s

per vortex (�2
s if the spectrum has Landau levels), which

easily follows from the free energy expansion [38] in
powers of �s. There is a critical finite �s at which the
vortex lattice melts in a first order transition because
Ekin � Epot. This happens at the solid line that separates

the SC and VL regions in Fig. 2(a). Since �s also mea-
sures the quasiparticle pairing gap, its finite value implies
that the transition is shaped by the Cooper pair dynamics
below the fermion excitation gap. The resulting insulator
is a quantum vortex liquid of uncondensed Cooper pairs,
whose qualitative properties are captured by the purely
bosonic theory [Eq. (5)].

Quantum liquids of SU(2) vortices are the prime candi-
dates for fractional TIs when their density is comparable or
larger than the density of Cooper pairs (otherwise, Mott or
density-wave insulators are stable). This expectation is
based on the transitions from vortex lattice condensates
to fractional quantum Hall states in the analogous system
of bosons in (effective) magnetic fields [39–43]. The mass
m in Eq. (1) can be estimated from the curvatures of the
Dirac cones in ARPES experiments [33], and it is larger
than the ‘‘spin-orbit’’ massmso ¼ �=v2 by a factor of � ¼
m
mso

� 5–10 (v � 5� 105 m=s). The cyclotron energy

!� ¼ �=m ¼ �� is not small in quantum wells with
band gaps � ¼ 10–100 meV that can be engineered with

a few quintuple layers [4]. The density of ‘‘magnetic’’
SU(2) flux quanta is n� ¼ �=h2 ¼ �2�2=ðvhÞ2 � �2 �
2� 1015 m�2. These estimates look promising if we com-
pare them with typical flux-quantum densities n� ¼
Bðhc=eÞ�1 � 2:5� 1015 m�2 (in B ¼ 10 T) and cyclo-
tron scales !� ¼ @eB=mc � 1 meV of electrons in frac-

tional quantum Hall states. The TI’s Cooper pair density is
controlled by the gate voltage, and can be brought near and
below n� to stabilize a fractional incompressible quantum
liquid in a finite parameter range of size !� surrounding
the QCP in Fig. 2(a). Detecting fractional charge and
statistics in the absence of magnetic fields, by shot-noise
or quantum interferometry methods from FQHE experi-
ments [44,45], would provide clear evidence of an estab-
lished fractional TI in the quantum well.
Without microscopic modeling and experimental data

we cannot rule out a possibility that singlets would con-
dense before triplets in a particular device. But even then, a
further rise of the gate voltage would eventually condense
triplets. Singlets cannot completely screen out the gate
from triplets because they repel each other more strongly
than they repel the triplets, by the Pauli exclusion principle.
Future experimental probes of topological spin dynamics
may be able to reveal fractional � vortex liquids even if
they coexist with a singlet superconducting state of the �
fields (which cannot screen spin).
Finding the precise nature of the fractional TIs goes

beyond the scope of this Letter as it requires the exact
diagonalization of a microscopic model. Instead, we can
illustrate their bosonic character by a simple example, such
as the bosonic Laughlin wave function [21] of 2N triplet
Cooper pairs �� whose coordinates are zi�:

� ¼ Y1...N
i<j

ðziþ � zjþÞnðz�i� � z�j�Þn
Y1...N
i

e�½ðjziþj2þjzi�j2Þ=4l2	:

The integer n is even, and this Abelian TR-invariant state
has excitations with fractional charge 2e=n, spin @=n, and
spin-Hall conductivity �s

xy ¼ 4e@=ðnhÞ. Since hj��j2i �
�=ð2	nÞ and � can be calculated from Eqs. (5) and (2),
one can find n in any ground state and identify Laughlin
states by the integer-valued n. The wave functions of
hierarchical quantum spin-Hall states can also be con-
structed [21,22]. They all describe TR-invariant vortex
liquids of spinful bosons (with vortex density l�2), and
thus are not far from being good candidates for the frac-
tional TIs in our system. However, they are not adequate
either because the Sz spin component is not conserved. It is
presently unknown how to write a proper wave function
for a fractional TI shaped by the Rashba spin-orbit cou-
pling, but an effective field-theory description is available
and points to the naturally non-Abelian character of
the ensuing incompressible quantum liquids. (See the
Supplemental Material [36] and Refs. [46,47].)
Instead of Sz, the spin quantum number in an ideal

Rashba-based TI is the eigenvalue of ẑðS� p̂Þ as evident
from Eq. (1). If it were conserved, measuring its average on

FIG. 3 (color online). A TR-invariant Abrikosov lattice in the
helical triplet condensate, �þ ¼ ���, �0 ¼ ���

0. Coinciding

vortices in �þ (red circles) and antivortices in �� (blue circles),
comprise an equilibrium state without charge currents and spin
texture, which gains energy by its Rashba-coupled spin current
loops.
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the fractional TI’s quasiparticles in the momentum p
eigenstate would yield a fraction of �@. However, the
realistic complete spin nonconservation, manifested as a
gauge symmetry violation in Eq. (5), spoils the measure-
ments of fractional spin. At least there is no obstacle to
observing the conserved fractional charge, so the fractional
TIs can exist. The fractional spin is a degree of freedom
rather than a quantum number of quasiparticles (which has
a mixed spin and orbital character). Combining an integer
number of fractional quasiparticles must reconstitute a
triplet Cooper pair, so the quasiparticles must inherit
from it a degree of freedom that transforms like spin under
time reversal and spans multiple basis states. Its fractional
quantization is guaranteed by the fundamental properties
of vortex dynamics in incompressible quantum liquids, and
its spin-orbit coupling may yield new topological orders
not found in FQHE systems.
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