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A theory is introduced for spin relaxation and spin diffusion of hopping carriers in a disordered system.

For disorder described by a distribution of waiting times between hops (e.g., from multiple traps, site-

energy disorder, and/or positional disorder) the dominant spin relaxation mechanisms in organic semi-

conductors (hyperfine, hopping-induced spin-orbit, and intrasite spin relaxation) each produce different

characteristic spin relaxation and spin diffusion dependences on temperature. The resulting unique

experimental signatures predicted by the theory for each mechanism in organic semiconductors provide

a prescription for determining the dominant spin relaxation mechanism.
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Spintronics in organic semiconductors [1] provides dra-
matically different regimes than are common for inorganic
semiconductors [2,3] or metals [4,5], due to the very low
mobilities and conductivities of organic materials, as well
as the ubiquity of constituents with low atomic number
[and thus often weak spin-orbit coupling (SOC) and long
spin relaxation times]. A major focus in organic spintronics
has been on organic spin valves [6–10], within which spin
polarized carriers are injected from one magnetic source
contact into a nonmagnetic organic spacer layer which the
carriers traverse before being collected by a magnetic drain
contact. If the spins maintain their polarization over the
length of the spacer region, then parallel and antiparallel
electrode magnetizations produce different resistances and
lead to spin-valve phenomenology. The spin-valve effect
requires the preservation of spin within the spacer layer;
therefore the reported long spin lifetimes in organic semi-
conductors increase the appeal of organic spin valves. Any
spin-based application beyond a spin-valve should also
require an understanding of the rate of decay of the spin
polarization in organic semiconductors. The dominant spin
relaxation mechanism is controversial [7,11–15] but
appears to be driven by either SOC or the hyperfine inter-
action (HFI) during hopping, or associated with an intrasite
relaxation (ISR) process that may include spin interactions
with phonon modes or the multiple nuclear fields at a
molecular site (independent of hopping). Only a few theo-
retical investigations [12,14] have examined spin relaxa-
tion including disorder, even though the interplay between
spin and charge dynamics is well known for inorganic
semiconductors [16].

Here we provide a unified theoretical description of spin
lifetimes in organic systems from SOC, HFI, or ISR, based
on a continuous-time random-walk theory [17,18] that pre-
dicts dramatically different spin lifetime dependencies on
temperature as well as previously unrecognized analytic
dependencies on other physical properties of the organic
semiconductor; these results are summarized in the upper
half of Table I. We introduce disorder in two scenarios:

(1) by allowing hopping carriers to be captured by traps at a
single energy or (2) at a wide array of energies. The second
scenario uses a hopping-time distribution that lacks a first
moment [a so-called heavy-tailed wait-time distribution
(WTD)] and also describes charge transport when energetic
disorder of a certain type is present that produces time-
dependent mobility (so-called ‘‘dispersive’’ transport).
These heavy-tailed WTDs, which at long times scale as
t�1�� where � is a characteristic parameter of the WTD,
provide the phenomenology associated with each spin re-
laxation mechanism (SOC, HFI, or ISR) during dispersive
transport. Dramatic qualitative differences emerge between
HFI and SOC spin relaxation times (�s) and spin diffusion
lengths (‘s), which positions our theory to predict experi-
mental observations to differentiate between the two; e.g.,
our theory provides supporting evidence that SOC domi-
nates inAlq3 whereas HFI dominates in poly[2-methoxy-5-
(2’-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV). In
addition, HFI, SOC, and ISR are incorporated simulta-
neously within a single theory, which illuminates crossover
behavior from one mechanism to another. Our results for
low disorder, reported in the nondispersive section of

TABLE I. Spin relaxation rate (��1
s ) and spin diffusion length

(‘s) dependencies on width of the Gaussian HFI distribution (a),
SOC (�), hopping rate (k0), and ISR (�). k0, �, and � depend on
temperature, and thus allow access to different regimes in the
same sample. Deuteration affects a and elemental composition
affects �. Fast hopping HFI considers only short-timescale spin
relaxation and diffusion. Spin decay in the dispersive regime is
algebraic in time.

Dispersive ISR HFI (fast) HFI (slow) SOC

1=�s � �a �k0 �k0�
2=�

‘s=�r �ðk0=�Þ�=2 �ðk0=aÞ�=2 �1 �1=�

Nondispersive ISR HFI (fast) HFI (slow) SOC

1=�s � 2a2=k0 �k0 k0�
2=3

‘s=�r
ffiffiffiffiffiffiffiffiffiffiffi
k0=�

p
k0=

ffiffiffi
2

p
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p
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Table I, agree with previously obtained analytic results for
SOC [14] and HFI [19] spin dynamics. We further agree
with the result of Ref. [12] for the spin diffusion length in
the fast hopping HFI dispersive regime for the special case
of � ¼ 1=2. By varying temperature, HFI strength, and
SOC, the entries of Table I change in a unique manner;
our theorywill aid experimental efforts to distinguishwhich
relaxation route occurs. As our theory uses an arbitrary
WTD, it is applicable to a wide variety of other types of
disorder and materials, such as spin transport in amorphous
silicon or colloidal quantum dot films.

Theory with general WTD.—The dynamics of a classical
spin S in an arbitrary precessional field!, influenced by an
ISR process with a phenomenological rate �, is

dSðtÞ
dt

¼ !� SðtÞ � �SðtÞ ¼ ð�� �1̂Þ � SðtÞ
¼ ð!�̂� �1̂Þ � SðtÞ; (1)

where� is a skew-symmetric matrix [20] and is solved by

SðtÞ ¼ e��te�t � S0 � e��tR̂ðtÞ � S0, where S0 is the ini-
tial spin vector and

R̂ðtÞ ¼ 1̂þ sin!t�̂þ 2sin2
!t

2
�̂ � �̂: (2)

Here we consider fields from two sources: a hyperfine field
(!hf) and a spin-orbit field (�). Spins at different sites that

begin in the same polarization state experience different
hyperfine fields, which causes partial dephasing of the spin
ensemble [21]; polarization is further lost when the spins
incoherently hop and experience different hyperfine fields
at other sites [22]. Hopping also affects spin polarization
through the spin-orbit interaction; spin flips are possible as
the carriers are not in pure spin states [14,23,24]. Figure 1(a)
schematically indicates the fields a spin might experience
over a time interval due to hyperfine and spin-orbit fields.
Lastly a spin at any site may interact with phonon modes,
which leads to ISR [15,25].

To describe the evolution of an ensemble, we simplify
the single-spin dynamics by assuming (1) hyperfine and
spin-orbit rotations are independent and isotropic in space,
(2) hyperfine rotations occur discontinuously at each hop
[26] [as represented in Fig. 1(a)], (3) spin-orbit rotations of
magnitude � (also treated phenomenologically) are inde-
pendent of the duration of time spent at a site (they only
occur at hops), and (4) ISR is independent of hopping.
Hyperfine fields are distributed according to a Gaussian
distribution with width a—a phenomenological parameter
assumed to be on the order of 1 mT. The random direction
of spin-orbit fields results from the random orientation of
localizing molecular sites [14].

After averaging Eq. (2) over the hyperfine field
distribution,

R̂hfðtÞ � hR̂ðtÞi ¼
Rx �Rxy 0

Rxy Rx 0

0 0 Rz

0
BB@

1
CCA; (3)

whose elements are found in Ref. [20]. The spatially

averaged spin-orbit rotation matrix is R̂� ¼ ½1�
ð4=3Þsin2ð�=2Þ�1̂. Typically, � is assumed to be a small

angle such that R̂� � ð1� �2=3Þ1̂.
We now consider the spin ensemble to be hopping from

site to site where the WTD is arbitrary; the time evolution
of the spin polarization can be calculated and the spin
relaxation time can be extracted—numerically in general,
but analytically in certain cases to be discussed. Since the
HFI operates between hops and the SOC affects spin at the
hopping event, their rotation matrices enter into the polar-
ization function in different ways that preclude interference
effects. In this sense, HFI is analogous to the D’yakonov-
Perel [27] and SOC is analagous to the Elliott-Yafet [28,29]
spin relaxation mechanisms for inorganic semiconductors.

The rotation accrued during the wait time is R̂s, which is

R̂hf when HFI is present and 1̂ when it is absent. An

angular rotation R̂h ¼ R̂� occurs from the hopping event

when SOC is present but is 1̂ when SOC is absent. The
third spin loss avenue, intrasite spin relaxation, simply

appends expð��tÞ to R̂s as seen from Eq. (1). With these

different factors in mind, we write the R̂ due to all single
hops in the spin ensemble as
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FIG. 1 (color online). (a) Schematic of the time-dependent
fields that a single spin experiences from HFI and a constant
(�) SOC. (b)–(d) k, the average hopping rate, is 100, a ¼ 0 and
� ¼ 0 so these results are for SOC only. (b) Polarization as a
function of time for explicit trap (black line) and biexponential
(red dotted line) models. The rate of leaving a trap, k0, for (a),
k0 ¼ 10, and (b), k0 ¼ 0:1 where each pair is labeled by k1, the
rate to be captured by a trap. Spin relaxation decreases as k1
increases (i.e., as trap number increases). The two models are
connected through the relations b ¼ k1=ðkþ k1Þ and � ¼ k0=k.
Multiexponential model in (c) with varying SOC values and in
(d) with different b. Slopes of long-time power law dependence
are indicated.
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R̂1ðtÞ ¼ R̂h

Z t

0
R̂sðt� t0Þ�ðt� t0Þe��ðt�t0Þ

� ½R̂sðt0Þ�ðt0Þe��t0 �dt0: (4)

The hopping rotation matrix is factored out of the integral
since it is independent of time. �ðtÞ is the WTD from
which the wait-time t is drawn. It appears once since one
hop occurs.�ðtÞ is the survival probability: the probability
that the wait time at a site exceeds t, �ðtÞ ¼ R1

t �ðt0Þdt0
[30]. The quantities R̂0ðtÞ � R̂sðtÞ�ðtÞe��t and R̂0

0ðtÞ �
R̂sðtÞ�ðtÞe��t permit the compact expression R̂1ðtÞ ¼
R̂h

R
t
0 R̂0ðt� t0ÞR̂0

0ðt0Þdt0. The procedure can be continued
indefinitely for an arbitrary number l of hops yielding the
recursive equation

R̂lþ1ðtÞ ¼ R̂h

Z t

0
R̂0

0ðt� t0ÞR̂lðt0Þdt0; (5)

which has the form of a convolution; ~̂RlðsÞ ¼ R̂l
h
~̂R0ðsþ

�Þ ~̂R0l
0 ðsþ �Þ in Laplace space. We build the polarization

function from the different number of random rotations
[22,31]:

PðtÞ ¼ P̂ðtÞ � S0 ¼
X1
l¼0

R̂lðtÞ � S0; (6)

where R̂lðtÞ � S0 is the polarization after l jumps occurring
between time 0 and t. The polarization can be calculated in
Laplace space by summing the geometric series Eq. (6) to
obtain our main equation:

~PðsÞ ¼ ~̂R0ðsþ �Þ½1̂� R̂h
~̂R
0
0ðsþ �Þ��1 � S0: (7)

We have left the polarization as a vector because, when an
applied field is present, the rotation matrices need not be
isotropic and the polarization in general decays with differ-
ent longitudinal and transverse spin relaxation rates.

An exponential WTD, �ðtÞ ¼ k expð�ktÞ characterized
by an average hopping rate k, provides a clarifying ex-

ample of the theory, as R̂0
0ðtÞ ¼ kR̂0ðtÞ and the Laplace

transform of R̂0ðtÞ is especially simple:
R1
0 R̂0ðtÞe�stdt ¼

~̂Rsðsþ �þ kÞ. Equation (7) becomes

~PðsÞ ¼ ~̂Rsðsþ �þ kÞ½1̂� kR̂h
~̂Rsðsþ �þ kÞ��1 � S0:

(8)

With HFI present, the polarization cannot be solved ana-
lytically in the time domain except in special cases. This
polarization function has been studied in the context of
muon spin rotation [19,31,32]. For only SOC (and � ¼ 0),
the polarization in the time domain is calculated exactly to

be PðtÞ ¼ e�k�2t=3, which is in qualitative agreement with
Yu’s recent determination [14,33]. If � ¼ 0, then ~PðsÞ ¼
1=ðsþ �Þ [i.e., PðtÞ ¼ expð��tÞ] can be shown from

the relation between ~� and ~�. Reference [20] contains

a general expression for Eq. (7) in the absence of
hyperfine fields.
Traps: simple models.—Before examining systems with

realistic WTDs, three instructional models are investigated
that have analytic solutions. The easiest model to study is
that of a single trapping level. There are two ways to obtain
nearly equivalent results: (1) incorporate explicit traps by
forming a modified renewal equation in the spirit of Eq. (7)
and (2) use a biexponential WTD to describe normal hop-
ping and trap release. The first approach was used in a
limited manner by Kehr and Honig [22]. We have gener-
alized their approach to include SOC but only report the
results here in Fig. 1(b) (black lines) where analytic solu-
tions for the polarization function are achievable if a ¼ 0.
The second approach accounts for traps by using the

biexponential WTD: �ðtÞ ¼ ð1þ bÞ�1ke�kt þ b�ð1þ
bÞ�1ke��kt with 0< fb;�g< 1. We consider b to be con-
trolling the importance of traps. When b is small, traps
become inconsequential as seen from the fact that the
single exponential WTD emerges. The dimensionless
quantity � determines the reduction of the trap release
rate compared to the normal hopping rate, k. It is important
to mention that spin relaxation results within the two-state
trap model and biexponential WTD are always fit well with
exponential decay times (aside from short time dynamics).
Figure 1(b) shows an example of SOC-only spin relaxation
(red dotted lines) and compares the explicit and biexponen-
tial trapping models. Since spin decay is produced by hops,
long release times (1=k0) promote long-lived polarizations
as shown in Fig. 1(b). Likewise more traps (larger k1)
reduces the overall number of hops, and spins live longer.
Heavy-tailed WTDs have successfully been used to

describe charge transport in disordered systems [17]. The
success of the biexponential model suggests an easy way to
extend the model to a diverse array of trap frequencies. We
construct a multiexponential WTD from the biexponential
model as follows: we allow for more trap release times by
taking � ! �j with j being a positive integer. Trapping
probabilities are also generalized to b ! bj. The resulting

WTD has been previously studied [34–36]: �ðtÞ ¼
b�1ð1� bÞP1

j¼0 b
jþ1�jke��jkt. For the condition b < �,

this WTD does not have an average wait time, which
distinguishes it from the biexponential WTD. At long
times, the algebraic form is found to be �ðtÞ � t���1

where � ¼ lnb= ln� [30,34]. Figures 1(c) and 1(d) show
different scenarios with this heavy-tailed WTD. Axes are
log-log to emphasize the algebraic decay as opposed to the
exponential decay in Fig. 1(b).
Mutiple-trapping.—We now examine a realistic WTD—

one due to trapping levels distributed exponentially and for
HFI and ISR as well as SOC. It is now thought that hopping
within an energetic distribution of hopping sites is much
like what occurs within the trapping model that is consid-
ered here [37,38]; essentially in each case the deep energy
states lead to dispersive transport [39]. In general the
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mutiple-trapping WTD is written as [40,41] �ðtÞ ¼R
0
�1 d"gð"Þkð"Þ exp½�kð"Þt�, where gð"Þ is the density

of states and kð"Þ ¼ k0e
"=kBT . Hartenstein et al. [38]

showed that this multiple-trapping WTD agrees well with
the Monte Carlo simulated hopping WTD.

At present we consider only an exponential density of
states and note that the end results are also valid for a wide
Gaussian density of states (�must be changed to 1=2); it is
advantageous to write the WTD in Laplace space,

~�ðsÞ ¼
Z 0

�1
d"gð"Þ kð"Þ

sþ kð"Þ ¼
Z 0

�1
dxex

k0e
x=�

sþ k0e
x=�

;

(9)

where x ¼ "=kBT0. The long-time behavior of the distri-
bution is algebraic �ðtÞ � t�1�� where � ¼ T=T0 [40]
(here T is the temperature and T0 is a parameter character-
izing the bandwidth of the states involved in transport). For
SOC, the integral can be computed so the inversion tech-
niques of Ref. [42] can be utilized to solve Eq. (7).
However, the form of the spin relaxation for both SOC
and HFI can be deduced from the following physical argu-
ments. From continuous-time random-walk theory [30],
the number of hops scales as n� ðk0tÞ�. Unsurprisingly
for SOC, the polarization falls with an increasing number
of hops; it can only do so given spin flips that happen with

probability ��2. So in general PðtÞ � 1=ðk0t�2=�Þ� for a
heavy-tailed WTD with SOC. The effect of HFI is more
subtle. When hopping is slow (k0 < a), even free hops lead
to rapid spin randomization—on the order of the hopping
time and independent of the strength of the HFI. When
hopping is fast and traps ineffectual, normal hops (�> 1 in
Fig. 2) lead to very little polarization loss since motional
narrowing occurs. When deep traps are present (�< 1)

then fast hopping entails that deep traps are quickly popu-
lated; the resulting polarization behaves similarly to the
Kubo-Toyabe polarization function [21]. This behavior is
characterized by two spin relaxation times: at short times,
�sa� 1 (blue diamonds in Fig. 2), and at long times a
much longer relaxation time exists (red triangles) that
approaches zero as the trap density increases. The fast
relaxation at short times is strikingly different than free
hopping in that the rate is independent of k0.
This reasoning can be proved for SOC—the long time

polarization is determined analytically to be algebraically
decaying as PðtÞ � t�� [20]. The spin relaxation rate (rate
to decay to 1=e) is

1

�s
/
(
k0�

2=�e�1=�f�1=� � < 1

k0�
2 �> 1

(10)

and is also displayed in Fig. 2 (solid black line) where the
role of disorder is apparent. f has further � dependence but
is weak when� is not near one. Since T0 is a measure of the
disorder, larger disorder increases �s, which agrees with our
single-trap analysis. Alternatively, this analytic result can
be checked for the exponential density of states and another
heavy-tailedWTD (multiexponential) by finding where the
numerical polarization functions decay to 1=e (with �
defined appropriately). The HFI within the multiple-
trapping picture poses a much more difficult problem ana-
lytically and numerically. However it is quite accessible
when the multiexponential WTD is utilized. By analogy
with SOC, those results are carried over to the multiple-
trapping picture with an exponential density of states.
For dispersive transport, a generalized diffusion coeffi-

cient is defined as K� ¼ r2k�0 =6�ð1þ �Þ where r is the

root-mean-square hopping distance [30]. This leads to ‘s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6K��

�
s

p
. In the nondispersive regime, the diffusion coeffi-

cient is D ¼ r2k0=6, which entails ‘s ¼
ffiffiffiffiffiffiffiffiffiffiffi
6D�s

p
. As a con-

firmation of our method, we remark that ‘s (when using a
short relaxation time scale) for fast-hopping HFI agrees
with the analysis of Ref. [12] for the special case of
� ¼ 1=2. One remarkable feature is that SOC’s ‘s has the
same form whether the transport is dispersive or nondisper-
sive. Whereas the SOC spin relaxation rates decrease due to
multiple trapping, mobility decreases as well so it is not
obvious whether ‘s increases or decreases in the dispersive
compared to the nondispersive regime. We find that the ‘s
does not change significantly across the two regimes so that
the Efros-Shklovskii hopping prescription for Alq3 [9] of
Refs. [14,33] remains valid. Slow hopping HFI relaxation
does not explain the data since the measured ‘s is always
greater than the typical hopping length. Alq3 is somewhat
unique in that its SOC is large (� � 0:03 [33]) compared
to other frequently studied organic semiconductors. For
instance SOC in MEH-PPV is Z100 times weaker than in
Alq3 [33]. This explains why HFI has a large effect on spin
preservation in the polymer poly[2,5-dioctyloxy-1,4-
phenylene vinylene] (DOO-PPV) [13]. When deuterated,
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FIG. 2 (color online). Numerical SOC spin relaxation rate
(black solid symbols) and HFI spin relaxation rate (red triangles
and blue diamonds) as a function of a. SOC calculations use
multiple trapping WTD with an exponential density of states
while HFI uses the multiexponential WTD. Solid black line is fit
using Eq. (10) with one multiplicative fit parameter. Blue dia-
monds depict the short time-spin relaxation. Red triangles rep-
resent the longer-time slower-spin relaxation. Vertical gray line
separates regions of algebraic and exponential spin decay.
k0=a ¼ 1000, � ¼ 0:1, and � ¼ 0.
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the spin relaxation rate change is nearly described by the
relation found here: ��1

s / a where a � 0:1� 0:6 rad=
ns �mT [20]. The change in ‘s also agrees if � is taken
to be near unity; changes in ‘s are more difficult to gauge
since it is not a strong function of a.

We conclude, by examination of the elements of Table I,
that the spin relaxation mechanism in assorted organic
semiconductors can be probed by altering the HFI (through
deuteration), the hopping rate (through temperature), and
SOC (throughmolecule choice). This theory should provide
a framework for future experimentalists to use for determin-
ing spin processes in organic semiconductors. In addition,
the theory should apply to other disordered systems in
which transport is dispersive, such as amorphous inorganic
semiconductors and colloidal quantum dot films [43].
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[16] M. E. Flatté and J.M. Byers, Phys. Rev. Lett. 84, 4220
(2000).

[17] H. Scher and E.W. Montroll, Phys. Rev. B 12, 2455

(1975).
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Relaxation, and Resonance (Oxford University,

New York, 2011).
[20] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.110.176602 for the

full form of the rotation matrix, the polarization function

with only spin-orbit coupling present using an exponential

density of states, and comparison of theory to experiment

for MEH-PPV.
[21] R. Kubo and T. Toyabe, in Magnetic Resonance and

Relaxation, edited by R. Blinc (North-Holland,

Amsterdam, 1966).
[22] K.W. Kehr, G. Honig, and D. Richter, Z. Phys. B 32, 49

(1978).
[23] P. I. Tamborenea, D. Weinmann, and R.A. Jalabert, Phys.

Rev. B 76, 085209 (2007).
[24] G. A. Intronati, P. I. Tamborenea, D. Weinmann, and R.A.

Jalabert, Phys. Rev. Lett. 108, 016601 (2012).
[25] Z. G. Yu, Phys. Rev. B 77, 205439 (2008).
[26] R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T.

Yamazaki, and R. Kubo, Phys. Rev. B 20, 850 (1979).
[27] M. I. D’yakonov and V. I. Perel’, Fiz. Tverd. Tela

(Leningrad) 13, 3581 (1971) [Sov. Phys. Solid State 13,
3023 (1972)].

[28] R. J. Elliott, Phys. Rev. 96, 266 (1954).
[29] Y. Yafet, Solid State Phys. 14, 1 (1963).
[30] J. Klafter and I.M. Sokolov, First Steps in Random Walks

(Oxford University, New York, 2011).
[31] Y.M. Belousov, V.N. Gorelkin, A. L. Mikaélyan, V. Y.
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