
Parametric Phase Locking in an Electron rf Oscillator

S. V. Kuzikov1 and A.V. Savilov1,2

1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
2Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia

(Received 7 November 2012; published 25 April 2013)

We propose a way to achieve phase locking of output rf radiation produced by an oscillator driven by a

cw electron beam. The locking mechanism is provided by fast periodic modulation of electromagnetic

properties of the operating cavity. Ohmic loss and/or the eigenmode frequency are modulated using

induced photoconductivity of a semiconductor insert, as affected by a laser with a pulse repetition rate

equal to twice the rf frequency.
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Powerful electron-beam based oscillators with a control-
lable phase have been the object of numerous studies over
the past several decades [1–5]. Such sources are needed for
particle accelerators, where electron bunches born at a
photo cathode illuminated by a high repetition rate laser
are assumed to be strictly in phase with the accelerating
fields provided by a high-power rf source [6–8]. However,
the techniques used to satisfy this synchronization condi-
tion are not free of phase errors caused by timing jitter in
the sequence of laser pulses. In this Letter, we study a
possibility to provide phase locking using a technique that
is less costly than would be an amplifier based on similar
principles, and is evidently able to deliver higher power.
Phase locking can be obtained using parametric modula-
tion in a property of the operating cavity (i.e., Ohmic loss
or operating mode eigenfrequency). Such modulation can
be provided by a photoconducting insert in the cavity that
is irradiated by a pulse-periodic laser whose wavelength is
near the band gap of the semiconductor [9]. The concept is
illustrated in Fig. 1. Depending upon on the concentration
of electrons in the conductivity band caused by absorption
of laser photons, the modulation could cause either addi-
tional rf absorption or displacement of fields away from the
semiconductor insert that would lead in turn to a change in
eigenfrequency.

As in a classical parametric oscillator, the modulation
frequency !p (the laser pulse repetition rate) should be

approximately twice the eigenfrequency of the operating
mode !0, i.e., !p � 2!0. If the phase deviation between

laser pulses is small enough, a subharmonic of!p can also

be used. The scenario where modulation of Ohmic loss is
a locking factor is illustrated in Fig. 1(b)). Mode ‘‘1’’,
having a near-zero electric field at the times when photo-
conductivity losses are highest, has a higher Q factor as
compared to mode ‘‘2’’ whose phase is shifted by �=2
relative to mode 1.

This proposed means of phase control has two important
benefits: it is not sensitive to the stability of laser power
from pulse to pulse; and one can control the phase as well
as the frequency during an rf pulse by changing slowly the

laser repetition rate (in the frequency band, which is in-
versely proportional to the rf cavity Q factor). The prac-
tical use of this locking mechanism for rf accelerators
possible for rf frequencies as high as several GHz. A
possible semiconductor insert for these purposes could be
either GaAs (" ¼ 11–13, tan�� 10�4, relaxation time
�300 ps) to be irradiated by 800–850 nm light at rf
frequencies up to 1 GHz [10], or CVD diamond films (" ¼
5:7, tan�� 10�5, relaxation time 0.1–50 ps) irradiated by a
uv laser with � ¼ 260 nm or193 nm, allow operating rf
frequencies up to about 10 GHz [11,12]. Existing lasers
having pulse durations from femtoseconds to picoseconds,
repetition rates at a gigahertz level, and energies as high as
101–105 nJ per pulse are able to provide a peak loss
tangent up to �1 for samples with sizes comparable with
a wavelength. Thus, they can be used for phase locking
based on modulation in Ohmic losses.
Let us consider field dynamics in the operating cavity of

an electron rf oscillator. Asymptotic equations of electron
motion [13] are obtained from the equation for the electron

Lorentz factor, � ¼ ð1� v2=c2Þ�1=2, namely,
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FIG. 1. (a) Schematic of a phase-locked electron maser.
(b) Electric fields of high-Q (1) and low-Q (2) eigenmodes,
EðtÞ, in the case of modulated Ohmic losses of the cavity, k00ðtÞ.

PRL 110, 174801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

26 APRIL 2013

0031-9007=13=110(17)=174801(5) 174801-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.174801


mc2
d�

dz
¼ �e

v �E
vz

; (1)

where v is the electron velocity, E / ReâFz expði!0tÞ is
the rf-wave electric field, âðtÞ is the slow amplitude, and
FzðzÞ ¼ sinðkzzÞ describes the axial wave structure. In both
cyclotron masers and free-electron masers the velocity has
an oscillatory component, v� / expðiR!edtÞ. Then, the
motion equations are represented as follows

d�

d�
¼ ��ReaFz expði�Þ; and

d�

d�
¼ !0 �!e

k0vz

; (2)

where � ¼ k0z, k0 ¼ !0=c, � is the electron-wave
coupling factor, and � ¼ !0t�

R
!edt is the phase.

Similar equations can be obtained for the Smith-Purcell
(Cherenkov) maser, in which case, !e ¼ kcorvz corre-
sponds to corrugation of the waveguide wall.

In the case of a near-cutoff operating wave (typically the
gyrotron [14]), kz � �=L � k0, so the electron-wave
resonance condition becomes !0 � !e, and the phase �
changes slowly. In the case of a far-from-cutoff wave,
the resonance condition is !0 � !e � kzvz, and equations
of motion with slowly varying phase �� kz�=k0 are
obtained.

If the electron-wave coupling causes a small change in
the energy, then Eq. (2) is represented as [13]

d�

d�
¼ �bð�� �0Þ �D; (3)

where D ¼ ½!eð�0Þ �!0�=k0vz0 is the normalized mis-
match in electron-wave resonance, and b ¼ @=@�½ð!e �
!0Þ=k0vz� is the electron bunching factor. By neglecting
the dependence of � and b on electron energy, one obtains
equations for u ¼ bð�0 � �Þ and a ¼ �bâ to be

du

d�
¼ ReaFz expði�Þ; d�

d�
¼ u�D: (4)

If there is no parametric modulation, then the equation
of rf wave excitation has the form [13,14]

@a

@�
þ a ¼ J; where J ¼ G

Z Z

0
Fz	d�: (5)

And where � ¼ !0t=2Q, 	 ¼ hexpð�i�Þi, Q is the dif-
fraction quality factor characterizing losses caused by the
rf wave output,G is the excitation factor proportional to the
electron current, Z ¼ k0L is the normalized length, and
h� � �i denotes averaging over all initial electron phases with
�0 2 ½0; 2��. Equations (4) and (5) lead to the energy
balance equation

1

2G

@jaj2
@�

þ p ¼ hui; (6)

with the normalized output rf power p ¼ jaj2=G, so that in
the stationary regime p ¼ hui.

Equation (5) is followed from the wave equation,

1

c2
@2A

@t2
� @2A

@z2
��?A ¼ 4�

c
j:

If the vector-potentialA has the formA¼F?ðr?ÞFzðzÞAtðtÞ
with �?F? ¼ �k2?F?, one obtains

1

c2
@2At

@t2
þ k2At ¼ Jt with Jt ¼ 4�

cN

Z
jF?Fzd

2r?dz:

(7)

Here, k2 ¼ k2? þ k2z andN is thewave normalization factor.

Let us introduce a slow complex amplitude At ¼ ReaðtÞ	
expði!tÞ, where ! ¼ !0 � i!00 with the ‘‘cold’’ eigenfre-
quency!0 and an imaginary part describing the diffraction
losses,Q ¼ !0=!

00. Then k ¼ k0 þ ik00 (here k00 describes
Ohmic losses), and one obtains the following from Eq. (7):

@a

@�
þ aþ 2Q

k00

k0
a ¼ J; where J ¼ 2QhJt expð�i�Þi�:

(8)

Let us generalize Eq. (5) to the case of the parametric
modulation in the properties of the cavity, when k ¼ k0 þ
k1ð�Þ þ ik00ð�Þ. Instead of Eq. (8) one then obtains

@a

@�
þ aþ F ¼ J; (9)

whereF¼2Qhexpð�i�Þððk00ð�Þ�ik1ð�ÞÞ=k0ÞReaexpði�Þi�,
and h� � �i� denotes averaging in time. Small oscillations
of the eigenfrequency are described by oscillations of the
real part of the wave number, k1=k0 ¼ ð�s1=2QÞ cos!pt.

As for Ohmic losses, they oscillate around some
averaged value, so that they are always positive, k00=k0 ¼
ðs=2QÞð1þ cos!ptÞ. In this case, Eq. (9) reduces to

@a

@�
þ aþ saþ sþ is1

2
a
 expð2i��Þ ¼ J; (10)

where � ¼ ð!p=2�!0Þ=ð2Q!0Þ is the parametric half-

frequency mismatch. Here, the term (a) describes diffrac-
tion losses, the term (sa) corresponds to averaged Ohmic
losses, and the terms �ðsa
Þ and �ðs1a
Þ describe fast
modulation in the Ohmic losses and of the eigenfrequency,
respectively.
In analysis of electron oscillators, it is convenient to use

a ‘‘klystron-like’’ model of the electron-wave interaction,
where the rf field structure is a sum of two delta functions;
i.e., Fz ¼ �ð�Þ þ �ð� � ZÞ, where �ð�Þ describes modu-
lation of electron energies at the beginning, whereas �ð� �
ZÞ models the interaction of the rf field with a bunched
electron beam. Then, J ¼ iaG expði�ÞJ1ðZjajÞ=jaj with
� ¼ DZ. Having approximated the Bessel function as
J1ðxÞ � x=2� x3=16, one obtains

J ¼ iaI expði�Þð1� 
jaj2Þ; (11)

where I ¼ GZ=2 and 
 ¼ Z2=8.
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In the small-signal approximation, jaj � 1, we neglect
parametric modulations and obtain from Eqs. (10) and (11)
the maximum increment for the phase � ¼ 3�=2:

� ¼ I � 1� s: (12)

Thus, the starting threshold is Ist ¼ 1þ s � 1.
Now, let us study stationary operation, when a ¼ a0 ¼

ja0j expði��þ i’Þ. By introducing sþ is1 ¼ S expði’sÞ,
in the case of � ¼ 3�=2 one obtains

� ¼ � ¼ S

2
sinð2’� ’sÞ; (13)

and

1þ sþ ðS=2Þ cosð2’� ’sÞ ¼ Ið1� 
ja0j2Þ: (14)

If S ¼ 0, there exists the only solution with the normalized
‘‘hot’’ frequency shift �0 ¼ 0, the wave amplitude

ja0j2 ¼ 1� I�1, and an arbitrary wave phase ’.

The presence of parametric modulations (S � 0) may
result in stationary operation with a fixed frequency shift,
�, which coincides with the shift of the modulation half-
frequency, �. Such stationary operation is possible if the
modulation frequency shift is small enough, i.e., �S=2<
�< S=2. The phase of the rf wave is determined by
Eq. (13), sinð2’� ’sÞ ¼ 2D=S. Since the rf phase appears
in Eqs. (13) and (14) as 2’, it is fixed with specificity
’� �.

According to Eqs. (13) and (14), there exist two sta-
tionary states with the same sinð2’� ’sÞ, but with oppo-
site cosð2’� ’sÞ (Fig. 2). Thus, cosð. . .Þ< 0 corresponds
to a mode with a higher Q factor and a greater rf wave
amplitude, whereas cosð. . .Þ> 0 corresponds to a mode
with a lower Q factor and a smaller amplitude. Thereby,


ja0j2 ¼ 1� ð1þ sÞI�1 � ðS=2IÞ cosð2’� ’sÞ: (15)

Let us consider the case of fast modulation in Ohmic
losses (S ¼ s and’s ¼ 0). If the parametric half-frequency
coincides with the eigenfrequency, � ¼ �0 ¼ 0, then
Eq. (13) yields two phases, ’ ¼ 0 and ’ ¼ �=2. Solution
’ ¼ �=2 with cosð2’Þ< 0 corresponds to lower Ohmic
losses; the electric field ‘‘zeroes’’ of such a wave coincide
with the maxima of Ohmic losses [Fig. 1(b), mode 1]. For

this mode, a ¼ �a
, and the Ohmic losses are described
by the term ðs=2Þa in Eq. (10). Solution ’ ¼ 0 with
cosð2’Þ> 0 corresponds to thewavewith the field maxima
coinciding with the maxima of Ohmic losses [Fig. 1(b),
mode 2]. For this mode, a ¼ a
 and losses are higher as
compared to the mode 1; they are described by the term
ð3s=2Þa in Eq. (10).
Analysis of the stability of these two steady-state modes

shows instability of mode 2. If one represents the solution
of Eqs. (10) and (11) in the form a ¼ a0 þ a1 [where a1 /
expð��Þ is a small perturbation], then one obtains the only
possible solution with a positive �:

� ¼ S cosð2’� ’sÞ: (16)

Thus, mode 2 with positive cosine is always unstable,
whereas mode 1 is stable (Fig. 2).
All results predicted from this analytical approach have

been confirmed by numerical simulations of Eqs. (4)
and (10). We study an oscillator operating at a close-to-
cutoff wave, with Fzð�Þ ¼ sinð��=ZÞ. The normalized
cavity length Z ¼ 2�L=�, corresponds to L ¼ 10�.
Figure 3 illustrates the stationary states of the electron
maser with no parametric modulation. The oscillator starts
atG � 0:014. The output power increases with an increase
ofG and saturates atG � 0:03–0:05. The maximum power
is achieved at the mismatch phase � � 2�. A character-
istic shift of the rf-wave frequency �� 1 is within the
frequency band of the cavity, �!=!0 � 1=2Q.
If a parametric modulation takes place, then in the sta-

tionary state the rf frequency shift coincides with the shift of
the parametric half-frequency, and � ¼ �. Figure 4 illus-
trates ranges of � where this phase-locked regime is stable
in the cases of modulated Ohmic losses (s � 0) and modu-
lated eigenfrequency (s1 � 0). We study the case of
a close-to-saturation excitation factor, G ¼ 0:03, and the
optimal resonance mismatch,� ¼ 1:9� as shown in Fig. 3.
If the modulations are absent, the ‘‘hot’’ eigenfrequency

of the oscillator is �0 � �0:25. According to the theory
(see Fig. 2), if the modulation half-frequency is close to
this eigenfrequency � � �0, then the stable phase-locked
operation with the phase 2’� ’s ¼ � builds up. In the

sin(2ϕ−ϕs)

2ϕ−ϕs

π/2

∆ S
22 1

3π/2

1

2 cos(2ϕ−ϕs)
|a0|

2= C1 - SC2cos(2ϕ−ϕ
s
)

FIG. 2. At a fixed shift of the modulation half-frequency �,
there exist two stationary states: (1) a stable state with negative
cosine, and (2) nonstable state with positive cosine.
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case of modulated Ohmic losses ’s ¼ 0 and ’ ¼ �=2 [see
Fig. 4(a)]. In the case of a modulated eigenfrequency ’s ¼
�=2 and ’ ¼ 3�=4 [see Fig. 4(b)]. A change in ���0

leads to a change of the rf-wave phase ’. If j���0j
becomes too great, then the stable regime with a fixed
frequency (� ¼ �) and locked phase is replaced with a
regime with automodulations of the output rf power [see
Fig. 5(a))]. However, if the phase-locked regime is stable,
then at different phases of the initial rf noise [að� ¼ 0Þ ¼
ain expði’0Þ] one obtains the same final frequency � ¼ �
and the rf-wave phase ’ see [Fig. 5(b)].

In the case of modulated eigenfrequency [as in Fig. 4(b)],
the range of the stable phase-locked operation is close to
that predicted by the analytical theory, i.e., �� � S. As for
the case of modulated Ohmic losses, this range is wider
[see Fig. 4(a)]. In the both cases, the effective Q factor of
the excited wave is maximum, when the modulation
half-frequency coincides with the ‘‘hot’’ eigenfrequency,
� � �0.

It is important that in the case of modulated Ohmic
losses [Fig. 4(a)], a higher Q factor corresponds to lower
losses �pohm ¼ ðhui � pÞ=hui, whereas the eigenfre-
quency modulation [Fig. 4(b)] leads to a change in the
effective diffraction Q factor, �Q ¼ ðp� huiÞ=hui. Thus,
in case ‘‘a’’, an increase in the modulation factor S leads to
an increase of the Ohmic losses and thus to a decrease in
the total Q factor, whereas in case ‘‘b’’ this leads to
increase of the effective diffraction Q factor.

Let us estimate the modulation strength s. If the change
in the dielectric permittivity, �" ¼ �"0 þ i�"00 is small,
then the complex shift of the eigenfrequency is approxi-
mated as s1 þ is � �"QðVp=VÞ, where Vp is the photo-

conductive layer volume and V is the cavity volume [15].

The concentration of free carriers ne is assumed small, so
that the rf wave frequency and the plasma frequency are
much lower than the carrier collision frequency �. Then,
�"00 ¼ 4�ene�=! [9], where� is the mobility of carriers.
If each photon produces one free electron in the conduction
band (ne ¼ Nph=Vp, whereNph is the number of photons in

a single laser pulse), then s ¼ 4�Qe�Nph=ð!VÞ. For ex-
ample, in order to obtain s ¼ 0:3 in a 30 GHz TE11-mode
gyrotron (L ¼ 10�, Q ¼ 25ðL=�Þ2 ¼ 2500) phase con-
trolled by CVD diamond (� ¼ 2200 cm2=Vs for electrons
and 1600 cm2=Vs for holes, respectively), one needs a
laser with a pulse energy W1 ¼ Nphhc=�1 � 50 nJ at the

wavelength �l ¼ 193 nm (here h is Planck’s constant).
Note that within the strong collision plasma model, the
change of the real part of �" is small, �"0 ¼ �"00!=� [9].
Therefore, the magnitude of the modulation of the real part
of the eigenfrequency is much less than !0=Q, so that an
increased mode competition is not expected.
In conclusion, we have discussed a relationship between

parametric phase locking of an electron rf oscillator and
the ‘‘classical’’ parametric instability of a pendulum. In the
latter case, modulation of the pendulum eigenfrequency
results in a growing-in-time solution with the frequency
and phase fixed by the parametric modulation. As for the rf
oscillator, its operating cavity looks like a pendulum with
significant losses (caused by the rf radiation output), so that
the classical parametric excitation of this pendulum is
impossible. However, this pendulum is excited by an
external force (emission from an electron beam). Since
this force is self-consistent, parametric modulation of the
pendulum eigenfrequency leads to phase locking of this
force. In this situation, approximately the same result
takes place in the cases of parametric modulation of both
the real part of the pendulum eigenfrequency and its
imaginary part (losses).
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