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It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight pipe

or channel are linearly stable. Here we present experimental evidence that such flows can be nonlinearly

unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are performed in a long,

straight microchannel; flow disturbances are introduced at the entrance of the channel system by placing a

variable number of obstacles. Above a critical flow rate and a critical size of the perturbation, a sudden

onset of large velocity fluctuations indicates the presence of a nonlinear subcritical instability. Together

with the previous observations of hydrodynamic instabilities in curved geometries, our results suggest that

any flow of polymer solutions becomes unstable at sufficiently high flow rates.
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Solutions containing polymer molecules do not flow like
water. Even when flowing slowly, these fluids can exhibit
hydrodynamic instabilities [1–8] and a new type of
turbulence—the so-called purely elastic turbulence [9,10]
even at low Reynolds numbers (Re). These phenomena,
driven by the anisotropic elasticity of the fluid, were ex-
perimentally observed only in geometries with sufficient
curvature, like rotational flows between two cylinders
[1,11,12] and plates [13], in curved channels [10,14], and
around obstacles [15]. Most of the nonlinear flow behavior
observed in these studies arises from the extra elastic
stresses due to the presence of polymer molecules in the
fluid. These elastic stresses are history dependent and
evolve on the time scale � that in dilute solutions is
proportional to the time needed for a polymer molecule
to relax to its equilibrium state [16].

A common feature of the above-mentioned geometries
is the presence of curved streamlines in the base flowwith a
sufficient velocity gradient across the streamlines. It has
been argued that this is a necessary condition for infini-
tesimal perturbations to be amplified by the normal stress
imbalances in viscoelastic flows [1,8,13]. This condition
can be written as ð�UN1Þ=ðR�Þ � M [8,13,17], where M
is a constant that only depends on the type of flow geome-
try, U is a typical velocity along the streamlines, R is the
radius of streamline curvature, and N1 and � are the first
normal stress difference and the shear stress, correspond-
ingly. According to this condition, purely elastic linear
instabilities are not possible when the curvature of the
flow geometry is zero, and infinitesimal perturbations
decay at a rate proportional to 1=� [8,18,19].

Nevertheless, the absence of a linear instability does
not imply absolute stability. Indeed, recent theoretical
[17,20–23] and indirect experimental [24,25] evidence
points towards a finite-amplitude transition in viscoelastic
flows with parallel streamlines even at low Reynolds

number, where viscous and elastic forces dominate over
inertial forces. An earlier study of the flow of a polymeric
melt extruded out of a thin cylindrical capillary [24]
reported that outside the capillary the extrudate developed
periodic surface modulations above a critical flow rate.
While this behavior was shown to be hysteretic, and
thus consistent with a nonlinear instability scenario, it
was unclear whether the instability originated inside or
outside of the capillary. In a recent investigation of a dilute
polymer solution flowing in a straight pipe [25], the authors
observed unusually large velocity fluctuations inside
the pipe, but the subcritical nature of the instability was
not established and no hysteretic behavior was reported.
Here, we present the first direct experimental evidence
of a nonlinear subcritical instability in a wall-bounded
straight channel flow for a single-phase viscoelastic
fluid.
Experiments are performed in a long (�3:3 cm),

straight microchannel system that consists of a short initial
perturbation region (� 0:2 cm) followed by a long parallel
flow region (�3:1 cm) as shown in Fig. 1(a). The micro-
channel system is 90 �m deep and 100 �m wide. The
initial perturbation region is located at the very beginning
of the channel and contains an array of variable number of
cylinders. This short array is only responsible for introduc-
ing flow perturbations into the long parallel flow region.
Cylinders in the array are 50 �m in diameter and 90 �m
tall; the distance between two adjacent cylinders is
200 �m (center to center). The number of cylinders n in
the initial perturbation region varies from 1 to 15 in order to
alter the strength of the perturbation; a channel devoid of
cylinders n ¼ 0 is also used for control. We note that the
parallel flow region is long (�3:1 cm), straight, and devoid
of cylinders; the fate of the initial flow perturbations intro-
duced by the cylinders is monitored in this long parallel
shear flow region using dye advection and velocimetry
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methods. All microchannels are fabricated using standard
soft-lithography methods [26].

Both Newtonian and polymeric fluids are investigated.
The Newtonian fluid is a 90% by weight glycerol aqueous
solution with shear viscosity � � 0:2 Pa � s. The poly-
meric solution is made by adding 300 ppm of polyacryla-
mide (PAA, 18� 106 MW) to a viscous Newtonian
solvent (90% by weight glycerol aqueous solution). Both
fluids are characterized using a strain-controlled rheometer
at 23 �C [27]. For all experiments, the Reynolds number
(Re) is small (<0:01) due to the channel small length scale
and high fluid viscosity. Here Re ¼ �UL=�, where U is
the fluid velocity, L is a characteristic length scale, and
� is the fluid density. The magnitude of the elastic stresses
compared to viscous stresses is characterized by the
Weissenberg number [28,29] defined as Wi ¼ N1=ð2 _��Þ,
where N1 is the first normal stress difference and _� is the
shear rate; further details in Ref. [27].

We begin with dye advection experiments which are
performed by injecting small amounts of dyed fluid (fluo-
rescein) into the flow from the top wall using a multilayer
injection scheme. Dyed fluid is injected at approximately
1.0 cm downstream from the initial perturbation region in
order to display only the flow patterns in the parallel flow
region. Images are taken about 1 mm downstream from
injection point. Figures 1(b) and 1(c), show snapshots of
the dye advection experiments at Re< 10�2 for both the
Newtonian and polymeric cases, respectively for a channel
containing 15 cylinders (n ¼ 15). The Newtonian case
[Fig. 1(b)] shows a stable layer of dyed fluid that does not
mix with the undyed fluid except by diffusion. An entirely
different pattern is observed when the Newtonian fluid is
replaced by a polymeric solution at Wi ¼ 10:9 [Fig. 1(c)].
The dyed fluid quickly mixes with the undyed fluid, which
suggests the presence of hydrodynamic instabilities and
time-dependent flow. Below we show that this time-
dependent flow is not due to the downstream advection of
the fluctuations around the cylinders, but rather is a unique
nonlinear state independent of the original perturbation.

Particle velocimetry methods are used to quantify the
instability observed in the dye experiments. The flow is
seeded with small fluorescent particles (0:86 �m diam)
that are tracked using a CMOS (3 kHz) and an epifluor-
escent microscope. The particle tracks are measured at a
midpoint between the top and bottom plates of the channel
in order to minimize the effects of out-of-plane velocity
gradients; the thickness of the measuring plane is approxi-
mately 2 �m. Measurements are performed in several
locations along the channel including one channel width
(1W) after the last cylinder as well as 50W, 100W, 150W,
and 200 W. The 1 Wmeasuring location is used to monitor
the amplitude of the initial disturbance introduced in the
flow by the array of n cylinders. The other measuring
locations are used to monitor the fate of the initial distur-
bance in the parallel flow region.
To quantify the time dependence of the flow, we sample

a square area (about 35% of the channel width centered at
midpoint) of the velocity fields in the parallel shear flow
region, and measure the average streamwise speed as a
function of time. The sampling rates are long enough
(�1 ms) to ensure the accuracy of the velocimetry mea-
surement but are much shorter than the typical time scale
of the fluid motion. All measurements shown in Fig. 2 are

FIG. 1 (color online). (a) Sketch of the experimental setup.
The dashed line window represents a typical sampling position.
(b), (c) Sample snapshots of dye advection experiments at
Re< 0:01 and 15 cylinders. (b) Newtonian case, (c) polymeric
case, with Wi ¼ 10:9. Field of view is 9� channel width.

FIG. 2 (color online). (a), (b): Spatially averaged velocity
magnitude as a function of time for (a) n ¼ 15 as a function
of Wi and for (b) Wi ¼ 10:9 as a function of n. (c), (d):
Instantaneous and mean streamwise velocity profiles for n¼15
for (c), Wi ¼ 5:4, and (d) Wi ¼ 10:9. (e), (f): Power spectra of
the velocity fluctuations from (a) and (b).
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taken at 200 Wor 2 cm downstream from the last cylinder.
Figure 2(a) shows samples of the velocity magnitude
records measured far downstream (200 W) for a channel
with n ¼ 15 as function of Wi or equivalently flow rate.
We find that, for the polymeric case, the velocity fluctua-
tions become larger as Wi is increased. The Newtonian
case, on the other hand, produces no such fluctuations at
comparable shear rates (210 s�1). In Fig. 2(b), we show
velocity records of the polymeric solution at a fixed
Wi ¼ 10:9 for channel systems with different number of
cylinders n. For the case of an empty channel (n ¼ 0), the
viscoelastic case shows no significant fluctuations even at
the highest shear rate. Time-dependent velocity fluctua-
tions, however, become apparent as cylinders are intro-
duced in the channel. This is further illustrated by plotting
the instantaneous and mean velocity profiles of the poly-
meric fluid. For Wi ¼ 5:4 [Fig. 2(c)], there is no time
dependence and the (base) flow is unidirectional. For
Wi ¼ 10:9 [Fig. 2(d)], on the other hand, the instantaneous
velocity profiles show significant differences between each
other and with the mean profile. Importantly, the amplitude
of velocity fluctuations is roughly independent of n at
a fixed Wi [Fig. 2(b)].

The corresponding power spectra of the velocity signals
in Figs. 2(a) and 2(b), are shown in Figs. 2(e) and 2(f),
respectively. Since the entire velocity field must be mea-
sured at each instant, the records are only a few hundred
points long, but this is sufficient to establish the qualitative
features of the spectra. In Fig. 2(e), we note that the
spectral power at low frequencies grows by 2–4 orders of
magnitude as the Wi is increased at a fixed n. Similar
behavior is observed as n is increased at a fixed Wi. The
velocity fluctuations are nonperiodic, with a possible
power-law decay, indicating that the flow is excited at
many time scales. Such decay has been observed in many
flow geometries with curved streamlines and has been
interpreted as evidence of elastic turbulence [9,10]. By
contrast, the Newtonian and n ¼ 0 (polymeric) cases
show a relatively flat power spectra consistent with noise.

Next, we investigate how the amplitude of the velocity
fluctuations changes along the channel. In Fig. 3, we plot
the standard deviation � of the velocity signal normalized
by its mean hVi measured at different locations in the
parallel shear region as function of Wi for n ¼ 15. As
expected, the velocity fluctuations for the Newtonian
case are small (� 0:01) and independent of the channel
position even at high shear rates. Results for the polymeric
solution show a different behavior. For Wi up to 5.4, the
values of �=hVi are relatively large immediately after the
last cylinder (1 W) due to a well-known instability that
develops in the wake of a cylinder for viscoelastic
flows [7,30]. In our experiments this instability sets in at
Wi�3:5. However, the velocity fluctuations decay to
values close to the Newtonian case in just a few channel
widths. This indicates that any flow disturbance that

initially develops in the channel is short-lived and damped
by viscous forces, and the flow far downstream is stable
for Wi< 5:4.
An entirely different behavior emerges forWi> 5:4 and

n ¼ 15. The velocity fluctuations, created in the wake of
the array of cylinders, settle to values of �=hVi that are
significantly larger than the Newtonian case (Fig. 3). These
velocity fluctuations decay to only 8%–10% after 50 W,
and remain approximately constant thereafter even at
200 W. Similar behavior in �=hVi is observed down to
Wi> 8:1. These data strongly suggest that a time-
dependent flow can be created and sustained in the parallel
shear flow region provided the Weissenberg number and
the strength of the initial perturbation supplied by the flow
around cylinders are both sufficiently large.
We now study how large a perturbation (created by the

cylinders) should be to destabilize the flow in the parallel
shear region. In Fig. 4(a), the magnitude of the velocity
fluctuations far downstream from the last cylinder are
plotted as a function of Wi for channels with different
number of cylinders n. For n ¼ 0, no instability is found
anywhere in the channel, and the values of �=hVi remain
near 1%. For n ¼ 1, a relatively small levels of fluctuations

FIG. 3 (color online). Velocity fluctuations �=hVi along the
parallel flow region as a function of channel position and Wi.

FIG. 4 (color online). Velocity fluctuations �=hVi at 200W
downstream from the last cylinder: (a) as a function of Wi and n;
(b) as a function of Wi for n ¼ 15 as the shear rate is increased
(dark curve) and decreased (red curve). Lines are added to guide
the eye. (Inset) Bifurcation diagram for the instability around the
cylinders.
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are observed (� 2:5%) even for large Wi; these fluctua-
tions could be due to flow convection.

A notable difference in flow behavior is observed when
the number of obstacles is further increased. For n ¼ 2 and
Wi< 5:4, the values of �=hVi are still relatively small
(� 2%). However, for Wi> 5:4, the velocity fluctuations
sharply increase and reach an asymptotic value of about
9% for large Wi. Similar behavior to the n ¼ 2 case is
observed for the n ¼ 5 and n ¼ 15 cases in polymer
solutions. The data in Fig. 4(a) clearly show the develop-
ment of two branches after a critical value of Wi, one in
which the flow is stable (n < 2) and the other in which
the flow is unstable (n � 2). Importantly, for n � 2 the
level of fluctuations saturates and does not depend on n
suggesting that the flow has reached the same nonlinear
state independent of the initial perturbation. A phase dia-
gram showing this nonlinear instability is available in the
Supplemental Material [27].

The dynamic behavior of the flow transitions are also
investigated [Fig. 4(b)]. For the linear array of cylinders
[Fig. 4(b), inset], where measurements are performed
immediately after the last cylinder or at 1 W, the transition
from steady to unsteady flow is characterized by a forward
bifurcation and no hysteretic behavior [7]. On the other
hand, the transition from steady to unsteady flow in the
parallel shear region (or 200 W) exhibits a dynamical
hysteresis (Fig. 4(b)): upon the increase or decrease of
the flow rate, the level of fluctuations sharply rises and
falls at different Wi’s. This hysteretic behavior is a hall-
mark of a subcritical bifurcation. This ultimately proves
that, while the cylinders or obstacles play an important role
in providing strong initial perturbations to the flow, the
resulting bulk instability in the parallel shear flow section
of the channel is clearly distinct from the instability around
the cylinders.

Finally, we comment on the relation between the
observed transition and the non-normal growth theory
developed for Newtonian [31,32] and viscoelastic
[22,23,33] shear flows. This theory considers linear dy-
namics of perturbations and predicts that in a linearly
stable system a perturbation which is not a pure eigenmode
of the non-normal linear operator will grow algebraically
in time before decaying exponentially. Our observations
are, however, incompatible with this prediction. Indeed,
such time evolution in a frame comoving with the mean
flow translates into an initial spatial region of increasing
fluctuations followed by a region where fluctuations decay,
when viewed in the lab frame. Instead, above the transition
we observe fluctuation levels that are essentially indepen-
dent of the spatial position downstream of the channel
(Fig. 3). Moreover, the non-normal growth theory predicts
that any nonmodal perturbation would be amplified. But
no significant fluctuations far downstream of the channel
are found in the presence of one cylinder even after the
linear instability around the cylinder sets in Fig. 4(a). This

suggests that there is a finite-amplitude threshold for the
transition and that the transition is nonlinear. Finally,
the subcritical nature of the transition, demonstrated in
Fig. 4(b), rules out any explanation based on a linear
theory. While it is likely that the non-normal growth is
a part of the transition we observed, the transition itself
is a nonlinear phenomenon, similar to the Newtonian
case [34,35].
In summary, we have shown experimentally the exis-

tence of a nonlinear subcritical instability for polymeric
fluids in a parallel shear flow at low Re. The critical value
of Wi for the onset of the subcritical instability in the
parallel flow is larger than 5.2 for the type of disturbances
introduced here. This critical value may, however, be very
sensitive to the type and strength of the initial perturbation
and will be further investigated. A possible mechanism
leading to this subcritical instability has been proposed
[21] in which the initial finite amplitude disturbance pro-
duces a new effective base flow with curved streamlines
in the parallel flow region and becomes linearly unstable
[5,8]. The transition then would depend on whether the
disturbance is sufficiently strong and long-lived to become
unstable. This scenario is akin to the transition to turbu-
lence of Newtonian fluids in pipe and channel flows, except
that the instability is caused by the nonlinear elastic
stresses and not inertia [36,37].
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