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Using Lagrangian simulations of a viscoelastic fluid modeled with an Oldroyd-B constitutive equation,

we demonstrate that the flow through a closely spaced linear array of cylinders confined in a channel

undergoes a transition to a purely elastic turbulent regime above a critical Weissenberg number (We). The

high-We regime is characterized by an unsteady motion and a sudden increase in the flow resistance in

qualitative agreement with experimental observations. Furthermore, a power-law scaling behavior of the

integral quantities as well as enhanced mixing of mass is observed. A stability analysis based on the

dynamic mode decomposition method allows us to identify the most energetic modes responsible for

the unsteady behavior, which correspond to filamental structures of polymer over- or underextension

advected by the main flow preserving their shape. These time-dependent flow features strictly resemble

the elastic waves reported in recent numerical simulations.
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Elastic turbulence represents an intriguing phenomenon
occurring in complex flows of polymer solutions and cor-
responding to the onset of a randomly fluctuating fluid
motion even in the creeping flow limit, at vanishing
Reynolds number. Although the study of elastic instabil-
ities in complex fluids dates back to the early 1990s [1,2], it
was not until the seminal paper of Steinberg and Groisman
[3] that a complex global flow motion was experimentally
observed and the term ‘‘elastic turbulence’’ was coined.
Although there is no common agreement on the definition
of ‘‘turbulence,’’ the term was introduced in Ref. [4] due to
the identification of strong similarities in the phenomenol-
ogy observed in the flow of polymer suspensions with
those commonly characterizing ordinary hydrodynamic
turbulence: namely, (i) significant increase in flow resist-
ance, (ii) randomly fluctuating fluid motion with fluctua-
tions increasing with the liquid elasticity, (iii) broad
continuum range of temporal or spatial frequencies
involved, with power-law spectral scaling behavior,
(iv) enhanced mixing of mass. On the basis of these
analogies, the work of Ref. [4] shows that elasticity-
induced turbulence could be obtained through a moderate
increase in the We number. In such conditions, the flow is
characterized by features that are comparable to those
observed in hydrodynamic turbulence for Re numbers of
around 104.

In this Letter, we report evidence of purely elastic insta-
bility and transition to turbulence and mixing in a wall-
bounded periodic flow geometry characterized by a linear
array of cylinders confined in a channel. This flow geome-
try and the corresponding unbounded one (square array of
cylinders) have been widely investigated in the past, both
experimentally and numerically, with controversial results.
In particular, the unbounded case has been investigated
experimentally in Refs. [5–8], where elastic instabilities

were generally observed to show up together with a modi-
fication of the global flow behavior: as a critical
Weissenberg number is achieved, flow quantities start to
exhibit fluctuations that increase in magnitude as the effect
of liquid elasticity becomes more pronounced. Moreover,
this phenomenon is accompanied by an abrupt increase in
the flow resistance, which is believed to be related to a
nonlinear transition from a steady state towards a more
dissipative time-dependent flow structure [7]. Less effort
has been devoted in the past to the experimental study of
the corresponding wall-bounded geometry; nevertheless,
analogous flow features have been reported in the literature
[8,9]. Although the wall-bounded two-dimensional flow
was experimentally [9] and numerically [10] found to be
unstable to three-dimensional perturbations at a given
critical Weissenberg number, to date no numerical method
has been able to predict either the unsteady behavior or the
large abrupt drag increase observed in experiments. In
Ref. [11], two-dimensional Lagrangian simulations using
a particle method [smoothed particle hydrodynamics
(SPH)] allowed us to observe the transition mentioned
above at a critical Weissenberg number of Oð1Þ, signifi-
cantly smaller than the one considered to be the threshold
for the onset of three-dimensional flow (�1:55). In this
Letter, we perform a detailed investigation of the flow
transition process using the dynamic mode decomposition
(DMD) approach recently developed in Ref. [12]. DMD is
a technique that allows for a modal analysis of a data
sequence, without resorting to a numerical solver or an
underlying model [12]. In the case of a linearized flow (i.e.,
a flow of small perturbation about a steady base flow), the
extracted structures are equivalent to global eigenmodes.
For a nonlinear flow, the decomposition produces modes
that express the dominant dynamic behavior captured in
the data sequence. Such analysis enables us to extract
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dynamic neutrally stable coherent structures from numeri-
cal snapshots of flow fields. The main aim of this inves-
tigation is to prove that this transition leads eventually to a
flow regime that exhibits several features of the so-called
elastic turbulence.

The problem considered in this work is sketched in
Fig. 1 and can be formulated as follows: a cylinder of
radius Rc ¼ 1 is placed on the centerline of a two-
dimensional channel characterized by a half-height
Hc ¼ 2. The liquid in between is driven by a constant
body force. No-slip velocity boundary conditions are
applied to the solid channel walls and on the cylinder
surface, while periodic boundary conditions are considered
along the streamwise direction, producing a linear array
structure of spatial period Lc ¼ 2:5. As a viscoelastic
constitutive equation, we adopt the Oldroyd-B model,
which is considered to match fairly well the main proper-
ties of Boger liquids commonly used experimentally [13].
Such a model has been also adopted in recent numerical
simulations of elastic instabilities [14–17]. Coupled to the
momentum conservation, it produces the following set of
equations written in a Lagrangian framework,

dv

dt
¼ �rp

�
þ �s

�
�vþ 1

�
r � �

dc

dt
¼ � � cþ c � �T þ 1

�
½1� c�;

(1)

where � ¼ Gðc� 1Þ is the polymeric stress tensor, G ¼
�p=� is the shear modulus, � is the elastic relaxation time,

c is the dimensionless conformation tensor describing the
average alignment or stretching of polymer molecules, and
� ¼ ðrvÞT is the velocity gradient tensor. To rule out the
effect of inertia, a Reynolds number Re ¼ Rchvi�=� ¼
2:4� 10�2 is used, where the total viscosity � contains
two contributions: the dynamic solvent viscosity �s ¼
24:58 and the polymeric viscosity �p ¼ 17:08. This gives

a factor � ¼ �s=� ¼ 0:59 commonly chosen in bench-
marks for the Oldroyd-B fluid. The Weissenberg number is
defined as We ¼ �hvi=R. In this work, simulations with
We 2 ½0:1:6� are performed. At greater We values, the
flow has shown to develop a weak component in the neutral
cylinder-axis direction [10]. For this reason, results of
two-dimensional simulations are unable to capture the
correct physics in such flow conditions. The previous

equations are discretized in a Lagrangian framework by
using the SPH method [18] by considering a minimum
particle spacing �x ¼ 0:02Rc, as discussed in detail in
Ref. [11].
Abrupt drag increase.—One of the main features char-

acterizing a transition to a turbulent state is represented by
a sudden increase in the flow resistance. In the case of a
viscoelastic flow through a cylinder array, the onset of
transition can be estimated by the enhancement factor
defined as the viscoelastic drag acting on the cylinder
normalized by the drag in the laminar Newtonian case
½FDðWeÞ=FNewt

D �. Figure 2 shows the enhancement factor
as a function of We. Slight deviations from unity up to
We ¼ Wec � 1 are observed, indicating that the visco-
elastic solution is close to the base Newtonian one. For
We � Wec, our numerical results exhibit an abrupt drag
increase (approximately 100% forWe� 1:6) in qualitative
agreement with observations made in experimental studies
of both confined and unconfined array of cylinders [5,7–9].
Numerical convergence of the results was proven in
Ref. [11]. The sudden increase in the flow resistance start-
ing at Wec � 1 corresponds to inception of an elastic
instability, namely, the flow becomes two-dimensionally
unsteady with fluctuations increasing with We. Figure 2
also shows the rms of the time-dependent lift acting on the
cylinder for differentWe values. Amplitudes increase with
We suggesting increasingly unsteady behavior. It should be
noted that this sudden increase in the drag and the corre-
sponding unsteady flow behavior have never been reported
numerically. Indeed, previous numerical calculations of
the linearized Oldroyd-B equations for this specific prob-
lem predicted absolute global stability of the steady base
solution at every We in contrast to experimental observa-
tions [9]. It should be underlined that a condition of linear
stability does not prevent the flow from becoming non-
linearly unstable [19,20] upon proper choice of a finite
amplitude perturbation.
Elastic instability: unsteady behavior.—To understand

the main mechanism of the change of flow configuration

FIG. 1. Schematic representation of the confined-cylinder flow
geometry.

FIG. 2. Drag force and rms of the lift acting on the cylinder as
a function of the Weissenberg number.
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towards unsteady behavior, we consider next a DMD
analysis recently developed in Ref. [12]. To this aim,
velocity or stress fields defined on Lagrangian particle
trajectories are interpolated at constant time steps on a
fixed grid once the stationary unsteady state is achieved
and the standard DMD procedure is applied. Figure 3
shows the relative amplitude of the dynamic modes in
the temporal frequency domain ! ¼ 1=T for We ¼ 0:4
and We ¼ 1:3 � Wec. In the former case, a flattened
spectrum is observed, suggesting that no coherent struc-
tures are visible within the threshold fluctuation level of
SPH. AtWe ¼ 1:3, a main peak is produced corresponding
to a dominant neutrally stable mode of frequency ! ¼
�! � 0:4 close to the characteristic elastic frequency !e ¼
1=� ¼ 0:5. Interestingly, an increased DMD amplitude is
obtained with decreasing !e approaching the flow fre-
quency !fl ¼ hvi=Lc ¼ 0:25. Such a finding suggests the
possible existence of a resonant mechanism in which the
main liquid elastic mode interacts with the periodic modu-
lation of the geometry. A similar interaction mechanism of
resonance between flow and an elastic filament has been
proposed in Ref. [21] in the framework of the laminar
Newtonian flow over a cylinder. Note that simulations
obtained using different particle resolutions (P1, P2, P3)
deliver the same results for the main frequency character-
izing the dominant mode of the instability, which excludes
the existence of a spurious, resolution-dependent behavior.
At larger frequencies, amplitudes do not drop suddenly to
zero, but they undergo a continuous decay. Figure 4 shows
different snapshots of the polymer elongation TrðcÞ for
We ¼ 1:3 after transition, corresponding to the most ener-
getic unsteady mode �!. The velocity field corresponding to
this mode is smooth in space and weakly oscillating in time
in a way that its changes are difficult to visualize on single
snapshots and can be better appreciated in the videos
provided within the Supplemental Material [22]. Note the
oscillatory motion undergone by the streamlines in the

recirculating region within the cylinder gap that produces
a cross-stream time-dependent flow of mass breaking the
plane symmetry. In contrast to the velocity field, the poly-
mer elongation field shows a very complex behavior char-
acterized by red areas (indicated by the label 1) of relative
overextension (with respect to the steady base solution)
and blue areas (indicated by the label 2) of local polymer
contraction. Moreover, a marked unsteady behavior is
visible, especially near the wall where structures are
advected by the local flow field, almost preserving their
shape. These inhomogeneities are absent at We ¼ 0:4
where no coherent unsteady behavior emerges (see
Fig. 3). These structures featured by the polymer elonga-
tion field resemble the nonstationary states predicted theo-
retically in Ref. [23] and recently observed and described
in Refs. [17,24] corresponding to a traveling elastic waves
regime. The wavy elastic motion and its coupling with the
underlying velocity field is the main driver responsible
for the onset of temporal dependencies in the integral
quantities and can favor the eventual mixing of mass and
momentum.
Power spectrum.—We analyze in detail the consequence

of these unsteady structures on the fluctuating dynamics. A
characteristic feature of elastic turbulence is represented by
the excitation of the fluid motion over a broad continuum
range of frequencies. Figure 5 shows the power spectral
densities of the velocity fluctuations in different locations
within the flow domain. For We ¼ 1:3>Wec, a power-
law decay!�� is observed over approximately 1 decade in
the frequency. The observed power-law exponent � fea-
tures a value higher than 3, significantly greater than the
Kolmogorov exponent (�K ¼ 5=3), in agreement with
theoretical predictions [23], experimental results [4], and
previous numerical simulations [16].
It has also to be noted that the intensities of the fluctua-

tions in the two stagnation points within the intercylinder
gap (points 4 and 5) are significantly smaller than those in
the remaining locations. This is consistent with the fact that
the above mentioned positions are characterized by an
average streamwise velocity approaching zero, whereas
that is not the case for the remaining locations.
Furthermore, stronger fluctuations arise in the near-wall
regions (points 1 and 3) rather than in the bulk (point 2).
We believe such increased level of velocity fluctuation to
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FIG. 3 (color online). Amplitudes of the dynamic modes vs
frequency ! ¼ 1=T for two typical Weissenberg numbers below
and above instability inception. Numerical resolutions P1, P2,
P3 used here correspond to a number of particles in the cross-
stream directions Ny ¼ 120, 144, 192 and show convergence in

the DMD spectra.

FIG. 4 (color online). Snapshot of the polymer elongation
TrðcÞ corresponding to the dominant mode of frequency ! ¼
�! � 0:4 for We ¼ 1:3 at different times after transition.
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be directly related to the presence of the strong near-wall
stress inhomogeneities shown in Fig. 4. Note also from
Fig. 5 that, although similar, the power-law exponent � in
the stagnation points is slightly smaller than that in the bulk
flow. These two points are located within the low-velocity
separated region and are not directly affected by the co-
herent structures discussed above. We believe that the
persistence of a power-law behavior (although with smaller
intensity) in the stagnation region is the result of a fluctu-
ating velocity field in the gap being purely induced by the
chaotic flow motion occurring outside the separation
region. The different driving mechanisms of the two
processes could explain the change in the exponent
� (� � 4:3 ! 3:4) observed here.

Mixing.—As a final proof, we present a study of the
effect of the elastic transition discussed above on the
dispersion of passive tracers. The Lagrangian character
of SPH allows us to follow directly fluid trajectories with-
out the need of extra tracking particles. At time t ¼ 0, we
mark in black all the fluid particles lying on a layer of
thickness 0:2Rc adjacent to the upper wall and monitor
their evolution for different We numbers. Figure 6 shows
the space-time diagrams obtained by plotting continuously
temporal snapshots of the brightness profiles taken along a
single perpendicular line between the cylinder and channel
wall. The upper figure (We ¼ 0:4) shows that, although
there is a small isotropic numerical dispersion, no aniso-
tropic mixing takes place. Instead, at We ¼ 1:3, chaotic
structures corresponding to large irregular oscillations in
the profile of the (black) dye in the (white) bulk fluid occur.
Expulsion of (black) material away from the wall is bal-
anced by injection of (white) bulk fluid within the near-
wall region. Such a phenomenon increases with time and
eventually leads to a much thicker mixed layer than in the
previous case. At time t ¼ 12, for We ¼ 0:4, the layer
thickness saturates to a value very close to the initial one
h � 0:2Rc, whereas forWe ¼ 1:3 at the same flow timewe

have h � 0:5Rc. The evolution of the mixing layers in the
two cases can be also appreciated in the Supplemental
Material [22].
Conclusions.—In this Letter, we have demonstrated for

the first time that an elastic turbulent regime can be repro-
duced numerically in the flow of an Oldroyd-B liquid in a
complex periodic channel flow geometry. In order to sup-
port this claim, three main characteristic features of the
turbulent behavior have been analyzed and reported,
namely, the abrupt increase of the flow resistance, a broad
range of spatial or temporal scales present in the fluid
motion, and enhanced mixing of mass. The chaotic motion
is triggered by an initial steady-unsteady transition in the
solution at We�Oð1Þ for which a dominant unsteady
neutrally stable mode exists. This slowly fluctuating mode
drains energy from the base steady solution, reducing its
total kinetic energy and feeding it into complex polymer
dynamics, characterized by the unsteady motion of areas
undergoing polymer over- or underextension. At suffi-
ciently great Weissenberg numbers, the mode is able to
mediate the energy transfer towards smaller scales produc-
ing increasingly irregular flow patterns and enhanced mix-
ing. The latter feature could be of paramount importance in
microfluidics conditions where mixing is generally limited
by the molecular diffusion [25–27]. It has been noted that
the introduction of finite polymer extensibility can have a
stabilizing effect on the dynamics [28,29]. We have explic-
itly checked that the use of a FENE-CRmodel does not alter
the results shown here, provided that realistically large
values of the polymer extensibility are considered [30].
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FIG. 5 (color online). Power spectral density of the velocity
signal in several locations for theWe ¼ 1:3 case. The location of
the probes is indicated in the inset. The PSD spectrum obtained
in the position 2 for the Newtonian case is indicated by dotted
dashed lines.

FIG. 6. Space-time diagrams for the evolution of mixing layers
of a black dye initially placed near the wall, for We ¼ 0:4, 1.3.

PRL 110, 174501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

26 APRIL 2013

174501-4



[1] R. G. Larson, E. S. G. Shaqfeh, and S. J. Muller, J. Fluid
Mech. 218, 573 (1990).

[2] E. S. G. Shaqfeh, Annu. Rev. Fluid Mech. 28, 129
(1996).

[3] A. Groisman and V. Steinberg, Nature (London) 405, 53
(2000).

[4] A. Groisman and V. Steinberg, New J. Phys. 6, 29 (2004).
[5] L. Skartsis, B. Khomami, and J. L. Kardos, J. Rheol. 36,

589 (1992).
[6] C. Chmielewski and K. Jayaraman, J. Non-Newtonian

Fluid Mech. 48, 285 (1993).
[7] B. Khomami and L.D. Moreno, Rheol. Acta 36, 367

(1997).
[8] K. Arora, R. Sureshkumar, and B. Khomami, J. Non-

Newtonian Fluid Mech. 108, 209 (2002).
[9] A.W. Liu, Ph.D. dissertation, Massachusetts Institute of

Technology, Cambridge, MA (1997).
[10] M.D. Smith, Y. L. Joo, R. C. Armstrong, R. A. Brown, and

R. Sureshkumar, J. Non-Newtonian Fluid Mech. 109, 13
(2003).

[11] A. Vázquez-Quesada and M. Ellero, J. Non-Newtonian
Fluid Mech. 167–168, 1 (2012).

[12] P. J. Schmid, J. Fluid Mech. 656, 5 (2010).
[13] D. F. James, Annu. Rev. Fluid Mech. 41, 129 (2009).
[14] R. J. Poole, M.A. Alves, and P. J. Oliveira, Phys. Rev. Lett.

99, 164503 (2007).
[15] B. Thomases and M. Shelley, Phys. Rev. Lett. 103, 094501

(2009).
[16] S. Berti, A. Bistagnino, G. Boffetta, A. Celani, and

S. Musacchio, Phys. Rev. E 77, 055306(R) (2008).

[17] S. Berti and G. Boffetta, Phys. Rev. E 82, 036314 (2010).
[18] A. Vázquez-Quesada, M. Ellero, and P. Español, Phys.
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