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Broken thin brittle plates like windows and windshields are ubiquitous in our environment. When

impacted locally, they typically present a pattern of cracks extending radially outward from the impact

point. We study the variation of the pattern of cracks by performing controlled transverse impacts on

brittle plates over a broad range of impact speed, plate thickness, and material properties, and we establish

from experiments a global scaling law for the number of radial cracks incorporating all these parameters.

A model based on Griffith’s theory of fracture combining bending elastic energy and fracture energy

accounts for our observations. These findings indicate how the postmortem shape of broken samples

are related to material properties and impact parameters, a procedure relevant to forensic science,

archaeology, or astrophysics.
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Patterns of multiple cracks, such as those appearing on
broken windows [1,2], remain difficult to interpret,
because the crack extension and the inherent modification
of the stress field are intertwined. These networks of cracks
are, however, of prime importance to understand fragment
size distributions resulting from impacts [3], a fundamental
problem of interest for the crushing and grinding process
industry. Studies addressing the behavior of a plate
impacted by a projectile have been numerous in relation
to security applications [4,5]. In this context the emphasis
is usually put on the damage or perforation of armor plates
made of high strength ductile materials, and different
perforation mechanisms leading to different postmortem
shapes have been identified [6,7]. Numerous studies have
also addressed the case of brittle material such as glass and
the difficult problem, even in static configurations [8], of
determining thresholds for damage. We focus here on
situations of dynamical impacts on brittle plates, and on
the formation of radial cracks whose extension is in general
much larger than the size of the impactor, and perform
controlled transverse impact experiments on plates of
PMMA poly(methyl methacrylate), a brittle plastic,
and glass.

The plates of PMMA (Young’s modulus Y ¼
3:3� 109 Pa, density �¼1:19�103 kgm�3, and Poisson
ratio � ¼ 0:39) have thicknesses h in the millimeter range
(h ¼ 0:5, 1.0, 1.5, and 3 mm) and side length of 15 cm.
They are held on a square frame with magnets, and we
focus on the response at short times for which the boundary
conditions on the sides of the plate do not affect the
dynamics. A steel cylinder of mass 16 g with a hemispheri-
cal end of radius ri ¼ 1:8 mm is accelerated with a gas
gun. It impacts the plates perpendicularly at their center at
speeds in the range 10–120 m=s. The plate surface is
observed from the face opposite the impact and the dy-
namics is recorded with a high speed camera recording
30 000 frames per second.

After impact, the plate is deformed by a transverse
bending wave growing in amplitude and radius. For speeds
above a threshold (typically 15 m=s for h ¼ 1 mm), a
pattern of radial cracks is observed early in the dynamics
(Fig. 1). In most cases, the number of cracks is set very
early on (t � 33 �s after impact) and it does not vary as
the radial cracks extend. Their angular distribution is quite
regular, and at a given time all the cracks present approxi-
mately the same length. At later times, waves interact
with the boundaries and the pattern loses its regularity.
As we increase impact speed from 15 to 120 m=s, the
number of cracks increases from 3 to 11. At low speeds
(below 65 m=s for h ¼ 1 mm), radial cracks extend until
they reach the sides of the plate. At high impact speeds, the
petals delimited by the radial cracks break to form circum-
ferential cracks resembling the conical cracks character-
istic of Hertzian fracture [8]. They appear at short times at
radii comparable with the radius of the impactor. Different
stages of circumferential cracks develop [Fig. 1(c)]
together with radial cracks resulting in the formation of
very small fragments. At higher speeds, a large number of
small fragments (with a characteristic size smaller than
plate thickness) are ejected. Typically, in this high speed
regime, the impacted plate exhibits a hole the size of the
impactor and thus the damaged area on the plate is smaller
than at low impact speeds.
For the lower range of impact speeds, the pattern evolves

in time. At short times two cracks extend out of the point
of impact, until new cracks form [Fig. 2(a)]. This scenario
is consistently observed at lower speeds for thin plates
(h ¼ 0:5, 1, or 1.5 mm). For thicker plates (h ¼ 3 mm)
we observe a reduction of the number of cracks when the
pattern expands. As shown on Fig. 2(b), initially a large
number of cracks form but only some of the cracks will
expand to form well-delimited petals.
Experiments were also performed on thin glass slides

(Y ¼ 6:1� 1010 Pa, � ¼ 2:38� 103 kgm�3, � ¼ 0:22)
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with thickness h ¼ 0:15 mm and side length 80 mm. The
plates rest on an annulus of inner diameter 60 mm. The
impactor is a cylinder of mass 3.3 g with a hemispherical
end of radius ri ¼ 0:5 mm. At speeds in the range
5–40 m=s, we also observe patterns of radial cracks.
After impact, a large number of cracks is apparent, but as

the pattern extends, only some of them open and separate
distinct petals [Fig. 1(d)].
The number of radial cracks of the final pattern for a

given plate material shows a clear augmentation with the
impact speed V and plate thickness h (Fig. 3). The number
of radial cracks on PMMA plates of different thicknesses
and of glass plates collapse when plotted against the non-

dimensional speed V̂ ¼ ðEh=�Þ2=3ðV=cÞ, where � is the
fracture energy of the material (300 J=m2 for PMMA
and 3 J=m2 for soda-lime glass, within the range of values

in the literature [9,10]) and c ¼ ðE=�Þ1=2 with E ¼
Y=ð1� �2Þ is the speed of sound in the material.
After contact with the plate, and after a short transient

involving compression in the bulk of the plate lasting tH,
the impactor triggers bending waves [11]. Kinetic and
bending energies balance, ��V2 � Eð�hÞ2� with curva-
ture �� w0=r

2
f, w0 ¼ Vt the indentation, and rf the radius

of the deformed region (the volume of deformed material

is � ¼ �r2fh), yielding rf � ðchtÞ1=2. The curvature ��
V=ðchÞ is constant in time [12,13]. Energies have been
estimated in a quasistatic fashion, time entering in the
description through boundary conditions only, themselves
a function of time. This implies that we consider time
scales long with respect to the propagation time of the
strain in the medium, and in particular to the smallest,
based on the plate thickness ts ¼ h=c.
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FIG. 2. Evolution of the crack pattern on impacted plates.
(a) The augmentation of the number of cracks from 2 to 4 is
typical of low speed impacts on thin plates (here PMMA with
h ¼ 1:5 mm). (b) For thicker plates (PMMAwith h ¼ 3:0 mm).
Some of the cracks formed at short times do not extend (here 7
cracks are initially formed but only 4 of them extend.
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FIG. 1. Star-shaped crack patterns on impacted plates. PMMA plates of thickness h ¼ 1 mm impacted transversely exhibit a pattern
of radial cracks that extend until they reach the side of the plate (a), (b) while at higher speed (c) circumferential cracks characteristic
of Hertzian fracture are also observed. (d) Similar patterns are observed on a glass slide of thickness h ¼ 0:15 mm impacted at
V ¼ 10:1 m=s. One identifies numerous cracks on the first panel of which only 11 will appear as extending cracks on the other panels.
For the purpose of visualization, white paint coats the glass plate.
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The bending response holds as soon as the compression
energy stored at the contact of the impactor EðVt=rHÞ2r3H,
with r2H ¼ riVt given by Hertz theory of contact [14,15],
overcomes the bending energy EðV=cÞ2r2fh above. This

occurs at tH � ðh=cÞðc=VÞ1=3ðh=riÞ1=3 larger than ts since

V � c. Comparing the stored elastic energy Er1=2i ðVtHÞ5=2
at tH with the energy needed to expand circumferential
cracks [16] across the plate �hrH yields a scaling law for
the critical speed at which the circumferential cracks

should appear V � h�5=4 in agreement with observation
[Fig. 3(d)]. The circumferential cracks appear at a radius
rH that does not depend on impact speed [Fig. 3(e)].

Finally, we note that the transverse deformation is
accompanied by stretching through geometric nonlineari-
ties. The stretching �� ðw0=rfÞ2 becomes significant

when the stretching energy Eðw0=rfÞ4r2fh becomes com-

parable with the bending energy, at time tf ¼ h=V.

The bending energy Ub of an elastic plate with trans-
verse displacement wðr; �Þ is

Eh3

24

ZZ
½�2

r þ �2
� þ 2��r�� þ 2ð1� �Þ�2

r��rdrd�; (1)

where �r ¼ @rrw, �� ¼ ð1=rÞ@rwþ ð1=r2Þ@��w, �r� ¼
ð1=rÞ@r�w� ð1=r2Þ@�w. For a plate clamped at an outer
radius rf with n regularly spaced radial cracks which

extends to �rf (with � < 1), the gain in elastic energy

that is inherent to crack extension is mainly due to the
flattening of the petals in the orthoradial direction and
the corresponding reduction of the bending energy
associated with the curvature ��. Indeed, near r ¼ 0, the

impact response of a plate [13] yields ð�� � �rÞ=�� �
�ð8=�Þ= logðr=rfÞ and radial cracks are arguably favored

since j��j> j�rj.
We perform indentation experiments of thin polycarbon-

ate plate (Y ¼ 2:3� 109 Pa, � ¼ 0:35, h ¼ 1 mm)
clamped at an outer radius rf ¼ 60 mm, on which n radial

cuts extending to �rf (with � < 1) were made with a thin

(0.2 mm wide) saw blade, measuring the force F to achieve
indentation w0, thus inferring elastic energy Ub ¼ Fw0=2.
The result is a parabolic relationship (for displacement less
than 1 mm) with a coefficient Ub=w

2
0 which can be used

to compute the stiffness of the cracked plate kbð�; nÞ ¼
ðUb=w

2
0Þð3r2f=�Eh3Þ.

These results can be accounted for by a low-dimensional
model. We consider two domains in the plate: first, an outer
domain (r > �rf) which is uncut, where the displacement

is taken as the displacement for an unbroken circular
plate loaded at its center [17] feðrÞ ¼ 	½1� ðr=rfÞ2 þ
2ðr=rfÞ2 logðr=rfÞ�. In the inner domain, we add a non-

axisymmetric displacement for the petals r < �rf. For the

petal bounded by cracks at ��=n and �=n, the displace-
ment is of the formwiðr;�Þ¼feðrÞþð1�	�
xÞð1�x2Þ,
with x ¼ ðr=�rfÞ cos�= cosð�=nÞ. Using this ansatz for the
displacement w, we construct the bending energy. The two
parameters 	 and 
 are then obtained by minimizing the
bending energy, giving kbð1; nÞ � 0:46 þ 2:8=n2. We
obtain a good agreement between this simple model and
our measurements, thus indicating that the flattening of the
petals is a key element to understand how the cuts alter
the bending rigidity of the plate [Fig 4(c)]. Bending energy
is minimal when cracks are extended (� ! 1). In this
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FIG. 3 (color online). Evolution of the pattern with impact speed. (a) The number of radial cracks increases with impact speed V for
PMMA plates (h ¼ 1 mm) and for glass slides (h ¼ 0:15 mm). The lines are n� V1=2. Inset: Number of radial cracks versus impact
speed for PMMA plates of thickness 0.5 and 3.0 mm. (b) The results are conveniently rescaled using the nondimensional impact speed
V̂ ¼ ðEh=�Þ2=3ðV=cÞ. Impact experiments were performed on PMMA plates (d) with h ¼ 0:5, 1.0, 1.5, 3.0 mm, and glass plates
(h ¼ 0:15 mm, j). The continuous line is the scaling law in Eq. (3) with a prefactor equal to 1.7. Open symbols are for impacts
presenting circumferential cracks. (c) The short time response consists of a deformation in the bulk and a bending deformation. (d) The
impact speed VH at which circumferential cracks appear decreases with plate thickness. (e) The radius of the first circumferential
cracks is constant with V (for PMMA plates with h ¼ 1:5 mm).
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configuration, the energy can be estimated, neglecting
transverse bending, by the energy of n triangular beams.
The bending energy of n triangular beams of length rf and

summit angle 2�=n is Eh3w2
0n tanð�=nÞ=ð3r2fÞ and thus

kbð1; nÞ � 1=2þ �2=ð6n2Þ.
In Griffith’s theory of brittle fracture [18], the pattern of

cracks corresponds to the global energy (i.e., elastic plus
fracture) minimum [19–22]. Using the bending energy
previously computed in the limit of long cracks extending
up to rf= cosð�=nÞ (optimization could be performed on �

as well, leading to no significant difference) and the frac-
ture energy 2n�hrf, the total energy can be written as

E
�r2fh

3

�
w0h

r2f

�
2
�
1

2
þ �2

6n2

�
þ 2n�hrf; (2)

with � the material fracture (surface) energy. Minimizing
with respect to n, with w0 ¼ Vt, the optimal number of

cracks is n� ðErf=�Þ1=3ðV=cÞ2=3. There are more cracks

in more brittle material (lower �), impacted more violently
(higher V). The number n is also anticipated to increase

(slowly) with time, through rf � ðchtÞ1=2. This is consis-
tent with Fig. 2, but at some point the increase stops and the
pattern is frozen.

The freezing time, after which a global energy minimi-
zation loses its sense, corresponds to the end of the elastic
connectivity of the pattern. The orthoradial curvature of a
petal is released when the crack tip has reached
rf= cosð�=nÞ. To drive the crack up to this point, transverse
displacement must occur in the area between rf and

rf= cosð�=nÞ. This is not possible as long as wave propa-

gation results solely from the balance between kinetic
and bending energy. Stretching can drive the transverse
wave farther than rf. Stretching energy EðVt=rfÞ4� domi-

nates bending energy EðV=cÞ2� for times larger
than tf ¼ h=V. At that time, the number of cracks is, and

will remain

n�
�
Eh

�

�
1=3

�
V

c

�
1=2

; (3)

explaining the scaling n ¼ 1:7V̂1=2 as seen in Fig. 3.
The study of patterns resulting from impact is a valuable

source of information on past or distant events in different
fields [23–25]. Our results reveal that quantitative insights
on the nature of the impacted sample and on the impact
conditions can be obtained from the number of radial
cracks. In astrophysics, impact patterns, either natural or
man made, are a means of investigation to infer properties
of distant bodies [26]. Though thin layers of brittle mate-
rials are often encountered on various planets, these always
lie on a soft or fluid substrate. Finally, we note the simi-
larity between the patterns resulting from impacts and the
patterns observed on brittle coatings on soft substrate [27].
In particular, the coexistence of radial and circumferential
cracks is observed in both cases and the evolution of the
number of cracks with indentation load has been observed
[28]. In these analogous situations, the crack pattern is
constrained by an intrinsic length scale, characterizing
the radial extension of the deformed area, evolving with
time in the case of impact (like rf), and which is equal to

ðEh3=12kÞ1=4, where k is the modulus of the foundation
[17] in the case of static indentation of brittle coatings.
We acknowledge support from the Agence Nationale de

la Recherche through Grants No. ANR-05-BLAN-0222-01
and No. ANR-11-JS09-0005 and from the Direction
Générale de l’Armement.

*vandenberghe@irphe.univ-mrs.fr
†Present address: Université de Pau, LFC-R, 64013 Pau,
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