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Nonclassical states of light are necessary resources for quantum technologies such as cryptography,

computation and the definition of metrological standards. Observing signatures of nonclassicality

generally requires inferring either the photon number distribution or a quasiprobability distribution

indirectly from a set of measurements. Here, we report an experiment in which the nonclassical character

of families of quantum states is assessed by direct inspection of the outcomes from a multiplexed photon

counter. This scheme does not register the actual photon number distribution; the statistics of the detector

clicks alone serve as a witness of nonclassicality, as proposed by Sperling et al. [Phys. Rev. Lett. 109,

093601 (2012)]. Our work paves a way for the practical characterization of increasingly sophisticated

states and detectors.
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States of the electromagnetic field with no analogue in a
classical theory of electromagnetism provide a means to
characterize quantum coherence and are a valuable resource
for quantum-enhanced technologies. Determining what
constitutes a nonclassical state is not a trivial matter.
Many criteria to establish where the quantum-classical
boundary lies have been proposed. Typically, one considers
pathological behaviors of distributions in phase space: one
looks for negative values of the Wigner quasiprobability
function on the quadrature space [1], or values more singu-
lar than a delta function of the Glauber-Sudarshan P distri-
bution on the phase-amplitude space [2–4], with the latter
definition covering a larger class of states. When detecting
photons directly, the Mandel parameter QM is often used
[5]. This neatly captures any sub-Poissonian behavior in the
photon statistics as a witness of nonclassicality.

Experimentally, these criteria have been widely
adopted, and inferred either by full reconstruction of the
distribution [6–10], or by direct measurement [11,12]. A
different approach consists of examining the photon
number distribution in a counting experiment [5,13–18].
While actual photon number resolving detectors are
becoming more frequently available [19–22], simpler so-
lutions are still appealing as quantum networks become
more complex. Multiplexed detectors are a commonplace
choice for accessing higher order Fock states by binning
the light to several on-off detectors [23,24]. As such,
these detectors do not output the photon number distribu-
tion. It is recognized that the Mandel parameter applied
to the click distribution would give false indications
of nonclassicality even for a large number of detection
bins [25]. A linear inversion technique is then required
[11,26–28] in order to obtain the actual distribution from
the distribution of the clicks. However, this becomes more
sensitive to noise and less tractable with increasing
system size.

In this Letter, we directly observe a signature of non-
classicality in the output of a time-multiplexed detector,
following the proposal in Ref. [29] which identifies a sub-
binomial behavior in the click statistics. We experimentally
measure this sub-binomial character for three families of
quantum states and compare it with the standard Mandel
parameter [5], as well as a naı̈ve analysis of the data. Our
results show that the sub-binomial behavior of click statis-
tics is a reliable indicator of nonclassicality of single-mode
light fields. Moreover, this test performs just as well at
inferring the true Mandel parameter from the photon distri-
bution. As quantum information systems evolve in sophis-
tication, characterization via full tomography becomes
prohibitively expensive, and our results pave the way for a
simple characterization of quantum states and detectors.
The general scheme of a multiplexed detector is illus-

trated in Fig. 1(a). These simple devices permit access to
more detail about the number distribution of a light field
through sequential division of an input beam on a series of
beam splitters, with detection of each output mode by
avalanche photodiodes (APDs). Different architectures
have been realized by using either spatial [Fig. 1(b)] [30]
or time-bin [Fig. 1(c)] [31] multiplexing. In this way, APDs
with no photon number resolving capabilities can still
deliver information about an input state with n > 1 pho-
tons. However, this is nondeterministic, occurring only
when the photons split into N separated spatial or temporal
bins. This means that the distribution of the photons fpng,
and the one of the clicks from the APDs fcig are different,
and their difference only scales with the number of bins as
1=N [25]. Some characterization of the device is required
to find the matrix relating the two distributions. Since the
splitting operates a linear transformation, the matrix can be
inverted in order to obtain the values of fpng [11,24,32]. In
our realization, we adopt a time-multiplexed detector
(TMD) which can detect up to N ¼ 8 events by splitting
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the input into two spatial and four temporal modes, whose
separation is larger than the typical dead time of an ava-
lanche photodiode [23,24,26,27].

The question arises whether there exists a way of
observing nonclassicality directly in the measured quanti-
ties fcig. A solution can be found by inspecting the Mandel
parameter:

QM ¼ �2n

�n
� 1: (1)

The negativity of this parameter establishes a sufficient
criterion for nonclassicality: this implies that the mean
�n ¼ P1

n¼0 npn is larger than the variance �2n ¼P1
n¼0ðn� �nÞ2pn, i.e., if the statistics are sub-Poissonian.

Coherent states, which benchmark classical light, display
Poissonian number statistics. By contrast, Fock states dis-
play sub-Poissonian statistics; hence, the corresponding
Mandel parameter takes negative values. When using
TMDs, a Poissonian distribution of the photons fpng results
in a binomial distribution of the counts fcig [25,29]. Based
on this, Sperling, Vogel, and Agarwal (SVA) have

developed a different nonclassicality criterion applying to
the measured click statistics:

QB ¼ �2c
�c
N ð1� �c

NÞ
� 1; (2)

where �c ¼ P
N
i¼0 ici, and �2c ¼ P

N
i¼0ði� �cÞ2ci. This

extends Mandel’s formula (1) to the case of a binomial
distribution with mean x, the variance of which is given by
xð1� xÞ. Consequently, nonclassicality can be directly
inferred from the sub-binomial behavior of the observed
statistics, i.e., QB < 0.
Here, we experimentally measure both QB and QM for

families of quantum states that may be tuned continually
between the classical and nonclassical regimes. To obtain
such states, we interfere a single photon with a coherent
state on a beam splitter with variable reflectivity R, and
consider the state on the transmitted arm conditioned on
the presence of k photons on the reflected arm [33,34]. For
k ¼ 1, we produce non-Gaussian states by performing
photon catalysis [27,35]. These allow us to investigate
the behavior of QB in the experiment, as we tune the state
from a single photon (R ¼ 1) to a coherent state (R ¼ 0).
The experimental scheme is shown in Fig. 2(b): a single

photon is produced by pulsed parametric down-conversion
in a nonlinear potassium dihydrogen phosphate (KDP)
crystal. This interaction produces a pair of photons with
orthogonal polarisations in a spectrally factorable state
[36]: the horizontally (H) polarized photon is detected by
an APD and serves as a herald event. The vertically polar-
ized (V) photon is spatially overlapped with a coherent
state j�i,H-polarized, on a polarizing beam splitter (PBS).
A variable beam splitter, comprising a half-wave plate and
a second PBS, is then used to interfere the two beams. We
monitor one output port heralding on the measurement of
either k ¼ 0, or k ¼ 1 photons by a first TMD. The condi-
tional state on the second port constitutes our quantum
signal, and the complete click statistics from a second
TMD fcig are collected.
We perform three different statistical analyses on the

collected data, whose results are reported in Fig. 3(a) for
k ¼ 0, and in Fig. 3(b) for k ¼ 1. In the first analysis, we
assess the sub-Poissonian character of the click statistics
using a Mandel-like parameter (red squares) defined as

QF ¼ �2c

�c
� 1: (3)

The blue dots report the experimental result for the genuine
Mandel parameter Eq. (1), after the photon distribution has
been obtained by inversion [28]. Finally, the experimental
values for the binomial parameter Eq. (2) are shown as the
black squares.
In general, the Mandel-like parameter QF cannot be

used to detect nonclassicality, as it can take negative values
even for the coherent states obtained when R� 0 [25], as
shown in Fig. 3(b). Further, its behavior depends on the
particular class of states under investigation: for the case in

FIG. 1 (color online). (a) General scheme of a multiplexed
detector. Access to more detail of the photon distribution is
obtained by dividing the input beam onto several modes, which
are then measured with on-off detectors, such as APDs. The
photon number distribution fpng determines the statistics of the
counts fcig, i.e., the probabilities of observing events with i
clicks regardless the bin in which they occur. (b) Spatially
multiplexed detector: the input beam is split by a set of beam
splitters onto a collection of spatial modes. (c) Time-multiplexed
detector: the input beam is coupled in a single-mode fibre and
split on a first 50:50 beam splitter. The two arms are then
recombined to form an unbalanced Mach-Zehnder interferome-
ter with a relative delay �t ¼ 50 ns. This produces four distinct
modes: two time bins on two distinct spatial modes. This
operation is repeated in a second unbalanced interferometer
with double relative delay 2�t, in order to produce two
more time bins. This is the detector we adopted in the present
experiments.
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Fig. 3(a) the separation between this parameter and the
Mandel parameter can be significant, while they are closer
in Fig. 3(b). In both cases, a systematic failure ofQF can be
seen at low reflectivities. This issue is resolved by employ-
ing the binomial parameter QB, which performs as well as
the Mandel parameter QM for our eight-bin detector, and
with similar uncertainties. In our experiment, we have
investigated an intensity regime in which the inversion is
not affected by the high-order time bins, in order to have a
reliable quantity of comparison for the SVA parameter of
our states. However, this might not be feasible in the
general case, as uncertainties in these terms will propagate
badly in the reconstructed fpng. Thus the direct approach of
SVA is useful in avoiding this source of error, as well
instabilities arising from noise.

We also use the SVA parameter to characterize
the output from the down-converter at higher gain,
producing a two-mode squeezed state of the form

jc i / P
n�0�

njniHjniV on the two orthogonally polarized
output modes. If wewere to use a photon-number resolving
detector, the observation of n photons on the H mode
would imply the presence of n photons, hence a sub-
Poissonian state, on the V mode [37,38]. In our experiment,
as shown in Fig. 2(b), we observe a similar behavior in
terms of sub-binomial light: a click from a TMD projects
the other mode on to a sub-binomial state. The joint
statistics from two TMDs, each measuring a different
polarization mode is shown in Fig. 4(a): from this we
have performed the SVA test on the states obtained by
conditioning on a given number of clicks on one TMD or
the other.
When all the events of TMD2 are considered regardless

of the measurement result at TMD1, or vice versa, we
observe classical behavior, as expected for a thermal state
[Fig. 4(b)]: we obtain the values QB ¼ ð9:3� 0:6Þ � 10�3

for the state on mode 1, andQB ¼ ð10:9� 0:6Þ � 10�3 for

FIG. 2 (color online). (a) Measurement of the nonclassicality
of a single-mode state. Photons are produced by pulsed type-II
colinear parametric down-conversion in a KDP crystal driven by
a doubled Ti:Sa pump laser (�p ¼ 415 nm, �� ¼ 50 nm, repe-

tition rate 256 kHz). This produces pairs of in a single spatio-
temporal mode [36]. The presence of a photon in the V mode
reflected by PBS1 is heralded by a click of an APD on the H
mode, and a trigger derived from the driving laser. A coherent
state j�i, derived from the main laser, is made to interfere with
the single photon on a variable beam splitter consisting of PBS2,
a half-wave-plate (HWP), and PBS3. The effective reflectivity of
the device is then set by the angle � of the HWP as R ¼ cos2�.
The transmitted arm is delivered to detector TMD1 which
provides a second herald event, either no clicks k ¼ 0 or a single
click k ¼ 1. The conditional states on the reflected arm are then
analysed by TMD2. (b) Observing sub-binomial behaviors in the
joint click statistics from a two-mode squeezed state generated
from the same crystal at higher pump intensity. The two modes
from the KDP are directly delivered onto two detectors TMD1

and TMD2, and clicks are collected.

FIG. 3 (color online). Test of nonclassicality for single-mode
states heralded by (a) k ¼ 0, and (b) k ¼ 1. In both figures, the
black boxes show the the Mandel parameter QM and the blue
points show the SVA parameter QB. The values of the Mandel-
like parameter calculated from the clicks QF are shown as
red points. The limit R� 0 correspond to coherent states for
which one expects no nonclassicality, while around R� 1,
the states approximate displaced single photons [27]. All
experimental points are obtained by 600 s of data collection.
Errors are evaluated by a Monte Carlo technique assuming
Poissonian noise.
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the state on mode 2. Discrepancies with respect to the
expected symmetry can be attributed to the different de-
tection efficiencies which have been measured. When only
the events causing no clicks on TMD1 are registered, we
still observe a similar behavior: the reduced efficiency of
our detector, in fact, makes this event similar to tracing
out the other mode. The measured values are QB ¼
ð10:2� 0:6Þ � 10�3 (mode 1) and QB ¼ ð8:5� 0:6Þ �
10�3 (mode 2). When single clicks are considered as
heralds, the state becomes sub-binomial, and so it happens
independently of the mode we use as the trigger:
QB ¼ ð�3:84� 0:33Þ � 10�2 (mode 1), and QB ¼
ð�4:49� 0:30Þ � 10�2 (mode 2). Finally, when triggering
on two clicks, the state does present some evidence for
nonclassicality, QB ¼ ð�3:3� 3:9Þ � 10�2 (mode 1) and
QB ¼ ð�8:3� 3:5Þ � 10�2 (mode 2), although the low
counts allow us to be confident only for mode 2. A statis-
tical analysis conducted by simulating experiments using a

Monte Carlo technique is reported in Fig. 4(c): while the
most likely values for both modes do lie well below zero,
the tails of the distribution make the value of QB for mode
1 still compatible with positive values.
Our experimental results, in the light of the retrodictive

approach in Ref. [39], also provides preliminary evidence
for a test of nonclassicality of the TMDs themselves. In the
retrodictive framework, the nonclassicality of a detector D
can be ascertained by observing the nonclassicality of one
mode of jc iwhen the other mode is projected by the action
ofD in the limit of high squeezing � ! 1. Although we are
far from this regime, the observed negativity of QB result-
ing from conditioning one of the arms on a TMD points
towards the nonclassicality of the device.
The direct experimental observation of the nonclassical-

ity of light fields is a vital aspect of foundational studies
and technological applications of quantum mechanics. In
this work we have shown how this is made possible by the
use of time-multiplexed detectors, and by directly inspect-
ing the resulting click statistics. This represents a more
elegant and unambiguous procedure for confirming quan-
tumness than their indirect verification by deconvolving
the action of the detector.
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