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Samples of ultracold 174Ybþ ions, confined in a linear radio-frequency Paul trap, are heated via

micromotion interruption, while their temperature, density, and therefore structural phase are monitored

and simulated. The observed time evolution of the ion temperature is compared to a theoretical model for

ion-ion heating allowing a direct measurement of the Coulomb logarithm in a linear Paul trap. This result

permits a simple, yet accurate, analytical description of ion cloud thermodynamic properties, e.g., density,

temperature, and structural phase, as well as suggests limits to and improvements for ongoing trapped-ion

quantum information efforts.
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Binary collisions in an ensemble of charged particles are
fundamental throughout physics. As such, modeling their
behavior plays an important role in applications ranging
from thermonuclear fusion [1] to quantum computation
[2]. Despite their importance and the large amount of
work towards understanding their effects, there is still
considerable ambiguity in how to best model these colli-
sions. Since Landau’s early work [3], the most straight-
forward approach handles the divergence associated with
collisions of charged particles by introducing both a short-
range and long-range cutoff for the 1=r interaction poten-
tial. The long-range cutoff is typically associated with the

Debye screening length, �D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0kBT=�e

2
p

, where � and
T are density and temperature, respectively. The short-
range cutoff is associated with the Landau length, RC ¼
e2=ð4��0kBTÞ, which is the distance of closest approach.
Taken together, the integration bounds give rise to the
so-called Coulomb logarithm in its simplest form, ln� ¼
lnðC�D=RCÞ, where C is a constant coefficient.

Over the last 75 years, there have been many attempts to
calculate an accurate form of ln�, ranging from straight-
forward estimations of the coefficient C [4] to sophisti-
cated analytical treatments [5] with reasonable consensus
that C � 0:765 [6]. These results give satisfactory agree-
ment with data for weakly coupled systems, g ¼ RC=
�D � 1, but clearly fail to describe strongly coupled sys-
tems, g � 1, where the collision rate saturates. In this
regime, more sophisticated treatments [7], which do not
require a short-range cutoff, have recommended several
alternative forms for ln�. And recently, a new approach,
motivated by the need to model thermonuclear ignition,
used molecular dynamics simulations to suggest ln��
lnð1þ 0:7=gÞ [8,9] for g < 10.

Given the importance of the Coulomb logarithm, there
have also been attempts at a direct measurement of its
dependence on the strong-coupling parameter g. These
experiments, which have either been confined to the
weak-coupling limit [10] or were inconclusive [11], were
typically performed in dense, high-energy plasmas

produced via laser ablation. In this work, we use an alter-
nate route to realize a strongly coupled ion system and
measure ln�: laser-cooled 174Ybþ ions confined in a linear
Paul trap. Here, the confining trap potential provides a
smoothly varying, neutralizing background for the posi-
tively charged ions, resulting in a system described as a
one-component plasma. Despite the low density, the low
temperature accessible through laser cooling makes it pos-
sible to realize systems with g � 1. Further, by laser
cooling the sample to a large g and then allowing the
ions to heat through micromotion interruption, we are
able to measure the evolution of both the temperature
and structural phase of the trapped ion cloud over a large
range in g. From these measurements, we are then able to
determine ln� for 10�7 � g � 10�2. Using a molecular
dynamics simulation, we confirm this experimental deter-
mination and extend it to 10�7 � g � 103. As the values of
ln� for large g are known to be process dependent [12],
this result must be carefully interpreted before it can be
applied to other systems. Nonetheless, it offers a complete
description of ln� for Paul traps, and thus allows a simple
analytical description of trapped ion thermodynamics.
In the remainder of this Letter, we explain the phenome-

non of ion heating by micromotion interruption, detail the
method by which ln� is extracted, and describe the ex-
perimental system.We present experimental and molecular
dynamics results and a recommended expression for ln� in
linear Paul traps. We conclude with a discussion of the
implications of this work for trapped-ion quantum infor-
mation efforts.
In a linear Paul trap, a singly charged ion experiences

both a time-dependent force from the confining electric
potential of the trap and Coulomb repulsion from the other
ions, resulting in trajectories given by

m
d2 ~ri
dt2

¼ �e ~r�ð ~ri; tÞ þ
XN
i�j

e2

4��0

~ri � ~rj

j~ri � ~rjj3
; (1)

with the trap potential given as
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�ð~ri;tÞ¼Vrf

r20
ðx2i �y2i Þcosð�tÞþ�Vec

z20

�
z2i �

1

2
ðx2i þy2i Þ

�
;

(2)

where r0 is the field radius, z0 is the distance from trap
center to the end cap used for axial confinement, Vrf and
Vec are the radio-frequency (rf) and end cap voltages,
respectively, � is the frequency of the rf voltage, and �
is a geometric factor less than unity. Due to the infinite
range of the Coulomb interaction, Eq. (1) represents a
complicated many-body problem and has no closed-form
solution. Therefore, two alternative approaches are usually
employed to treat this system.

First, rigorous molecular dynamics (MD) simulations
have been performed to study the structure of ion clouds
[13] and rf heating rates [14], and for comparison with
experimental ion fluorescence images [15]. Despite their
successes, these simulations offer little physical intuition,
making it difficult to optimize a given system.

The second approach to modeling large ion systems in a
Paul trap has been through analytical techniques [16–19].
Of these, the simplest and most intuitive describes the
trapped ion trajectories by the well-known Mathieu solu-
tions and includes the effect of the Coulomb interaction as
hard-sphere collisions between ions to calculate, among
other things, the evolution of the trapped ion kinetic energy
[18,19]. In this limit, the collision-induced heating rate is
given as, _W ¼ ��W, where � is the collision rate and �W
is the kinetic energy change per collision [19], which is
found by enforcing conservation of momentum and energy
for the collision and requiring that the new ion trajectory
corresponds to a Mathieu solution. In contrast to static
traps, �W does not average to zero over time, or over the
ensemble, in a rf Paul trap. In fact, as shown in Ref. [19]
upon averaging �W is always positive, leading to the
so-called micromotion-interruption heating phenomenon.
Though this heating has been explained in different ways
[16,20,21], it arises from the simple fact that when ions
undergo collisions their trajectories are not given by the
stable Mathieu trajectories and as a result the rf trapping
field can do net work on them.

To link temperature with W, we introduce Tsec and Ttot

to be proportional to the random thermal energy (secular
motion) of the ions and the total kinetic energy (secular
motion plus micromotion), respectively [21]:

CTtot ¼ W; CTsec ¼ Wsec ¼ �ðW �WexÞ (3)

where C ¼ 3
2NkB and � is the ratio of secular energy to

total energy—� � 3
5 for low Mathieu q parameters as a

consequence of equipartition of energy between secular
motion and micromotion [18]. Wex accounts for the excess
micromotion energy [22] due to displacement of the ion
from the node of the oscillating electric field, as a result
of either the location of the ion in the crystal or stray,
uncompensated, dc electric fields. Typically, Tex ¼ Wex=C

is a few Kelvin for an ion crystal composed of
N � 103 ions [15,22].
Using the Chandrasekhar-Spitzer plasma self-collision

rate [4] (also see Supplemental Material [23]), the rate
of change of the secular temperature of the ion cloud is
given as

_Tsec ¼ e4�iðTsecÞ ln�
2��20

ffiffiffiffi
m

p ð3kBTsecÞ3=2
��ðTsec þ �TexÞ; (4)

where �iðTsecÞ is the ion density [19] and �� ¼ �W=W is
the average fractional increase of the ion energy per
collision. By averaging over the rf phase at which the
collision takes place, Refs. [18,19] have calculated �� in
terms of the Mathieu stability parameters a and q (see
Supplemental Material [23]). Through numerical integra-
tion of their result, we have found �� can be simplified to
�� � 2

3 ð1þ 2q2:24Þ with a relative error<0:4% for q � 0:4,

a ¼ 0. Thus, by laser cooling a sample of trapped ions to a
low initial temperature, extinguishing the laser cooling,
and monitoring the ion temperature evolution, we are
able to measure ln� as a function of g.
The experimental apparatus used in this work consists

of a sample of 174Ybþ ions, loaded via laser ablation,
into a linear rf Paul trap with r0¼1:2 cm, z0¼1:075 cm,
� ¼ 0:13, � ¼ 2�� 300 kHz, Vrf ¼ 155 V, and Vec ¼
5 V. A strongly coupled ion ensemble (N ¼ 102–3) is
realized by laser cooling the Ybþ ions, along the trap
axis, with a 369 nm cooling laser (detuned from resonance
by 	 ¼ �30 MHz) and 935 nm repump laser (	 ¼
0 MHz) to a starting secular temperature, measured from
the Doppler broadened fluorescence profile, ranging from
Doppler limited, TD � 1 mK, to 100 mK, depending on
crystal size, resulting in a one-component plasma with
g ¼ 102–103.
Once the strongly coupled plasma is established in the

trap, the cooling laser is extinguished and the ions evolve
in the trap and heat through micromotion interruption.
After a variable time delay, the cooling and repump lasers
are reapplied and the fluorescence level of the ion cloud
immediately recorded. If the ion temperature has increased
during the time when the lasers were extinguished, this
fluorescence level will be different than the steady-state
value reached for the initially cold plasma, see Fig. 1(a).
By recording the ratio of fluorescence before and after
heating, the temperature of the ions can be estimated as a
function of heating time in a manner similar to Ref. [24].
Typical data is shown in Figs. 1(b) and 1(c) for a sample
of N ¼ 280 ions with estimated uncertainties indicated
by error bars (for estimation of uncertainty, see
Supplemental Material [23]). Typically, the observed fluo-
rescence ratio decreases with increasing temperature since
both the fluorescence profile is further Doppler broadened
and the higher energy ion trajectories have less overlap
with the laser beam inducing the fluorescence, see
Figs. 1(a) and 1(b).
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As seen in Figs. 1(b) and 1(c), the fluorescence level,
and thus the temperature, is relatively unchanged until
10–100 ms after the laser cooing is extinguished, when a
sharp increase in temperature occurs, followed by a region
of slower heating. As detailed below, the relatively small
heating rate observed at early times is a consequence of the
suppression of ion-ion collisions, i.e., a small ln�, for a
strongly correlated plasma, while the sudden jump in
temperature coincides with the phase transition from the
liquid to gas phase. At the liquid-gas boundary, the ion
density is still relatively high, but the ion motion becomes
less correlated, i.e., increased ln�, leading to a larger
heating rate. As the ions move into the gas phase, the
motion becomes even more uncorrelated, leading to a
further increase in ln�; however, the density, and thus
the collision rate drops, leading to a reduced heating rate.
Also shown in Figs. 1(b) and 1(c) are the results of a
molecular dynamics simulation, which initializes the ions
at the experimentally realized temperature and then inte-
grates Eq. (1) numerically using a leapfrog algorithm [25]
implemented in PROTOMOL software [26]. As the ions heat
through micromotion interruption, their fluorescence level
is calculated from the known laser intensity profiles and a
rate-equation model, which includes the variation of laser
intensity and Doppler shift for each ion position and
velocity, respectively. Given experimental imperfections,
such as stray fields, machining errors, laser amplitude, and
frequency noise, etc., that are not included in the simula-
tion, the agreement between the simulated and measured
fluorescence ratios [Fig. 1(b)] is satisfactory. In what
follows, we use these results to extract the ion-ion heating
rate and ultimately ln�.

Using experimental data like that shown in Fig. 1 for ion
clouds with N between 300 and 3000, and modeling the
density under the assumption of harmonic potential and
thermal equilibrium as

�iðTsecÞ ¼
8<
:
�max : Tsec � Tp

�max

�
Tp

Tsec

�
3=2

: Tsec � Tp

(5)

where �max ¼ �0V
2
rf=mr40�

2, Tp ¼ m �!2

4kB
½3N4�

mr4
0
�2

�0V
2
rf

	2=3, and
�! is the geometric mean of the three secular frequencies,
Eq. (4) is inverted to find ln� and the results are plotted
in Fig. 2. As the heating rate is the time derivative of Tsec,
the coarse granularity of the experimental data in time
makes it difficult to calculate reliable values of ln� at
short time scales. Therefore, we also determine the heating
rate and ln� frommolecular dynamics simulations. For the
simulated data, the heating rate is found by taking the
numerical time derivative of the ion temperature,

defined by 3
2NkBTtot ¼ m

2

P
N
i¼1 ~viðtÞ2 and 3

2NkBTsec ¼
m
2

PN
i¼1 ~vsec;iðtÞ2 where ~vi and ~vsec;i are the total and secular

velocity of ith ion and the overline denotes averaging over
several secular motion periods. The resulting values for
ln� are consistent with those extracted from experimental
data, as shown in Fig. 2, but are expected to be of higher
accuracy. Using this technique, molecular dynamics simu-
lations were performed, like those shown in Fig. 1, for a
range of ion numbers N ¼ f50; 100; 500; 900g and ion-
cloud radial-to-axial ratios [27] of R=z ¼ f0:25; 1; 4g) to
determine if the parameterization of Eq. (4) leads to a
universal form for ln� in Paul traps.
The values of ln� extracted from the simulation are

plotted versus g in Fig. 2 alongside the Landau-Spitzer result
[6] and the result of Ref. [8]. Also shown, as the top hori-
zontal axis in this figure, is the corresponding plasma cou-
pling parameter� ¼ e2=ð4��0aWSkBTsecÞ, which, given the
Wigner-Seitz radius aWS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð4��iÞ3

p
and Tsec, character-

izes the structural phase of the ion cloud as denoted by
the three regions of the graph [28]. Clearly, despite the
large changes in ion number and ion-cloud geometry,
the dependence of ln� on g appears universal and can be
parametrized by the piecewise fit

ln� ¼
8<
:
fIðgÞ ¼ lnð1þ0:7=gÞ

1þ125
ffiffi
g

p : g < 1

fIIðgÞ ¼ fIðg¼1Þ
g2

: g � 1
(6)

where the form of fIðgÞ has been inspired by Ref. [8].
Interestingly, the observed change in dependence of ln� on
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FIG. 1 (color online). (a) Laser fluorescence profile for a sample of ions at TD (solid line) and at �90 K (dashed line). The inset
shows a typical fluorescence image of an ion cloud. (b) The observed (dots) and simulated (line) fluorescence ratios for 	 ¼ �30 MHz
vs heating time. (c) The extracted (dots) and simulated (solid line) Tsec, as well as (dashed line) Ttot, vs heating time.
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g occurs near the gas-to-liquid phase boundary, which, since
�D=aWS ¼ 1=

ffiffiffiffiffiffi
3g3

p
, also coincideswith the regimewhere the

Debye length becomes smaller than the average interparticle
spacing. Therefore, assumingDebye theory is approximately
valid for g > 1=3, it is reasonable to expect the ion-ion cross
section is proportional to�2

D and thus ln� / �2
DT

2 / g�2, in
agreement with the fit.

For reference, shown at the right of Fig. 2 are the secular
velocity distributions of the ions for three selected g values.
In this figure the points are a histogram of the simulated
secular velocity distribution, while the solid curve is the
Maxwell-Boltzmann (MB) velocity distribution expected
for the calculated temperature. Clearly, the simulation
results for the gas and liquid phases are consistent with
the MB distribution, confirming the appropriateness of the
Chandrasekhar-Spitzer rate in deriving Eq. (4). For the
solid phase, the velocity distribution exhibits a significant
power-law tail, violating the assumptions of Eq. (4) and
preventing an accurate determination of ln� in this phase.

Several analytical results can be derived usingEq. (6) that
provide insight into the plasma dynamics and have impor-
tant consequences for quantum computation with trapped
ions. First, for g � 1, ln� can be approximated as a con-
stant (as is typical for low density plasma [29]) and Eq. (4)

integrated, yielding Tsec / t1=3. In this regime, the ion
temperature grows slowly until it is eventually balanced
by evaporative loss from the trap or sympathetic cooling
from residual neutral background gas. Second, assuming
that Tex � Tsec in the initial ion crystal, Eq. (4) can be
directly integrated for g>1 yielding Tsec ¼ ½cðtm � tÞ	�2,

where c ¼ fIð1Þ2��0k3=2B ���Tex=ð
ffiffiffiffi
m

p
e2Þ and the time of

the dramatic rise in temperature as the ions move into the

gas phase is tm ¼ T�1=2
sec ðt ¼ 0Þ=c, which in the case of

our experiment is accurate to �10 ms. Interestingly, in
quantum computation with strings of trapped ions the com-
putational gate operations occur with the laser cooling
extinguished. Therefore, tm represents the upper limit for
the time to implement a computational algorithm since,
once the ion string melts, the quantum information is lost
and the register must be reinitialized. For the parameters of,
e.g., Ref. [30] with 14 ions and Tex � 1 mK, we find this
fundamental limit to be�103 s. If this system is scaled to a
larger number of ions, as necessary for many practical
quantum computation applications, tm will be significantly
reduced if excess micromotion is not controlled and may
limit the number of possible gate operations. Likewise,
recent proposed experiments to use kinked ion chains to
study the Kibble-Zurek mechanism [31] and the coherence
of discrete solitons [32] will be fundamentally limited to
time scales less than 1–10 s. In addition to providing the
upper limit for a single computation or simulation, the
expression for tm can be used to guide future efforts. For
example, linear string geometries of heavy ions at low
Mathieu q parameter should exhibit the longest lifetimes.
Finally, to demonstrate the utility of the expression for

ln�, Fig. 3 compares experimental data for two ion clouds
of different size (N ¼ 280 and 2800), taken in the same
manner as the data of Fig. 1, with the temperature and

FIG. 2 (color online). The experimental (black dots) andmolecu-
lar dynamics (white dots) determinations of ln� versus g. Despite
large variation in trap parameters (see text) the observed values fall
along the same curve, indicating a ‘‘universal’’ form for ln�. The red
line represents the best fit described in the text, while the black and
dashed line are the results of Ref. [8] and lnð0:765=gÞ [6], respec-
tively. Shown at the right of the figure are the velocity distribution
functions, extracted from simulation, for selected g values.
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FIG. 3 (color online). Comparison of experimental temperature and density for two ion clouds [N ¼ 280 (blue dots) and N ¼ 2800
(red dots)] to the results predicted by Eq. (4) with ln� given by Eq. (6) (lines) as a function of time. The calculated heating ion-ion
heating rate is also shown for both cases.
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density predicted by the integration of Eq. (4) using
Eq. (6). In addition to providing a simple means to accu-
rately calculate the thermodynamic properties of a system
of trapped ions, these expressions explain several well-
known experimental observations. For example, the
smaller ion-ion heating rate [Fig. 3(c)] in the solid phase
is due to ion-ion correlation as quantified through ln�.

In conclusion, we have measured the heating rate of ions
trapped in a linear rf Paul trap due to micromotion inter-
ruption. These data, and detailedmolecular dynamics simu-
lations, have been used to determine the value of ln� over a
range of 10�7 � g � 103. Though most determinations of
ln� are process dependent [12], we expect our results to be
comparable to ln� in other one-component plasmas for
g � 1, as the Mathieu trajectories accurately describe the
ion motion in this regime. This expectation is supported by
the fact that our result converges to the traditional Landau-
Spitzer result in this regime. However, as g grows the
Mathieu solutions provide a less accurate description of
the ion trajectories, leading to a change in, e.g., ��. If future
theoretical work accounts for these effects, then our mea-
surement might be reinterpreted to give a model indepen-
dent determination of ln�, which we expect to be similar
to the form suggested by Dimonte and Daligault [8].
Nonetheless, in its current form our result permits a simple,
yet accurate, analytical description of ion cloud tempera-
ture, density, and structural phase transitions in a linear
Paul trap. Thus, it should be immediately useful to a number
of experimental efforts, including the growth of large ion
crystals [33], sympathetic cooling of atomic or molecular
ions [34–36], and trapped-ion quantum information.

We thank G. Morales and T. Killian for guiding discus-
sions. This work was supported by the ARO Grant
No. W911NF-10-1-0505 and NSF Grant No. PHY-1005453.

Note added in proof.—Very recently ln� was deter-
mined for 1 � � � 3 in an ultracold neutral plasma
experiment [37].
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