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Towards the feasibility study of the electroweak baryogenesis in realistic technicolor scenario, we

investigate the phase structure of (2þ Nf )-flavor QCD, where the mass of two flavors is fixed to a small

value and the others are heavy. For the baryogenesis, an appearance of a first-order phase transition at

finite temperature is a necessary condition. Using a set of configurations of two-flavor lattice QCD and

applying the reweighting method, the effective potential defined by the probability distribution function of

the plaquette is calculated in the presence of additional many heavy flavors. Through the shape of the

effective potential, we determine the critical mass of heavy flavors separating the first-order and crossover

regions and find it to become larger with Nf. We moreover study the critical line at finite density and the

first-order region is found to become wider as increasing the chemical potential. Possible applications to

real (2þ 1)-flavor QCD are discussed.
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Introduction.—Precise knowledge of the phase structure
of finite temperature QCD could offer an opportunity to
probe the physics beyond the standard model (SM), pro-
vided that new gauge theory induces dynamical electro-
weak (EW) symmetry breaking. Technicolor (TC) is such a
model [1], where the Higgs sector in the SM is replaced by
a new strongly interacting gauge theory and its spontane-
ous chiral symmetry breaking (S�SB) causes EW symme-
try breaking. TC is a vectorlike gauge theory, and if we
choose SU(3) as a gauge group it is essentially QCD. The
difference is only in their dynamical scales: �1 TeV for
TC and �1 GeV for QCD. Thus, numerical techniques
developed in lattice QCD trivially apply to the study of TC,
where the lattice cutoff is determined by equating the pion
decay constant to 246 GeV (Higgs vacuum expectation
value). The realizability of this model is now actively inves-
tigated using lattice gauge theory [2].We consider TC inclu-
ding many fermion flavors transforming as the fundamental
representation of SU(3) since the presence of many flavors
potentially resolves various problems in classical TC.

In this work, we focus on the possibility of the EW
baryogenesis within the TC scenario [3], which requires
TC gauge theories to go through a strong first-order chiral
phase transition. The nature of the phase transition depends
on the number of flavors and masses [4]. In realistic TC
models, two flavors of them are exactly massless and the
resulting three massless Nambu-Goldstone (NG) bosons
are absorbed into the longitudinal mode of the weak gauge
bosons. On the other hand, the mass of other Nf flavors

must be larger than an appropriate lower bound otherwise
S�SB produces too many (light pseudo) NG bosons,
none of which is observed yet. Consulting the study of

(2þ 1)-flavor QCD including up, down, and massive
strange quarks, the first-order transition is realized when
the strange mass is below the critical mass. Thus, requiring
the first-order EW phase transition in TC model brings
in the upper bound on themass ofNf flavors. Thismotivates

us to study the thermal nature of (2þ Nf )-flavor QCD.

As discussed below, the critical mass increases with Nf.

Hence, the boundary of the first-order region can be inves-
tigated more easily for large Nf.

Another purpose of this study is to understand the real
QCD with 2þ 1 flavors. At the physical masses and zero
density, the chiral transition is crossover, and is expected to
become first order at a critical density. The determination
of the critical density is one of the most interesting topics
in the study of QCD. To this end, finding the critical
surface in the masses and chemical potential parameter
space is important [5,6]. However, recent lattice QCD
studies suggest that the critical region at zero density is
accessible only when the quark masses are very small and
thus its determination is difficult [7]. The study of many-
flavor QCD is a good testing ground for investigating
Nf-independent universal properties, such as the critical

scaling near the tricritical point, which is expected in the
up down quark massless limit. This will provide important
information for (2þ 1)-flavor QCD.
Method.—To study the phase transition, we calculate the

effective potential defined by the probability distribution
function of the plaquette. The distribution function has two
peaks at a first-order transition, since two phases coexist
with the same probability. The nature of the transition
can be thus identified through the shape of the potential
[8,9]. We define the plaquette distribution function for
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(2þ Nf)-flavor QCD with the quark masses mf and

chemical potential �f (f ¼ 1; . . . ; Nf þ 2) by

wðP;�;mf;�fÞ ¼
Z

DUDcD �c�ðP� P̂Þe�Sq�Sg

¼
Z

DU�ðP� P̂Þe6�NsiteP̂

� YNfþ2

f¼1

½detMðmf;�fÞ�; (1)

where Sg and Sq are the gauge and quark actions, respec-

tively, and M is the quark matrix. Nsite � N3
s � Nt is the

number of sites. � ¼ 6=g20 is the lattice bare parameter. P̂
is the generalized plaquette operator, and this method is

applicable to the case of improved actions replacing P̂ to

P̂ ¼ �Sg=ð6Nsite�Þ. Normalizing by the partition func-

tion, Z ¼ R
wðPÞdP, Eq. (1) gives the histogram for P̂.

The effective potential is then given by

VeffðP;�;mf;�fÞ ¼ � lnwðP;�;mf;�fÞ: (2)

We consider QCD with two degenerate light quarks of
the mass ml and the chemical potential � and Nf heavy

quarks. Denoting the potential of two-flavor QCD at� ¼ 0
by V0ðP;�Þ, that of (2þ Nf )-flavor QCD is written as

VeffðP;�;mf;�Þ ¼ V0ðP;�0Þ� lnRðP;�;mf;�;�0Þ; (3)

with

lnRðP;�;mf;�;�0Þ
¼ 6ð���0ÞNsiteP

þ ln

��
detMðml;�Þ
detMðml;0Þ

�
2 YNf

f¼1

detMðmf;�fÞ
detMð1;0Þ

�
P: fixed

; (4)

where h� � �iP: fixed � h�ðP� P̂Þ � � �i�0
=h�ðP� P̂Þi�0

and

h� � �i�0
denotes the ensemble average over two-flavor con-

figurations generated at �0, ml, and vanishing�. Since the
ml dependence is not discussed in the following, ml is
omitted from the arguments. �0 is the simulation point,
which may differ from � in this method. By performing
simulations at various �0, one can obtain the potential in
a wide range of P.

Restricting the calculation to the heavy quark region, the
second determinant for Nf flavors in Eq. (4) is approxi-

mated by the leading order as

ln

�
detMð�hÞ
detMð0Þ

�
¼ 288Nsite�

4
hP̂þ 12N3

s ð2�hÞNt�̂þ��� (5)

for the standard Wilson quark action and

ln

�
detMðmhÞ
detMð1Þ

�
¼ 36Nsite

ð2mhÞ4
P̂þ 6N3

s

ð2mhÞNt
�̂þ � � � (6)

for the four-flavor standard staggered quark with mh. �h in
Eq. (5) is the hopping parameter being proportional to

1=mh, and �̂ is the real part of the Polyakov loop �̂R for

�f ¼ 0 and �̂ ¼ coshð�h=TÞ�̂R þ i sinhð�h=TÞ�̂I for

�f ¼ �h, including the complex phase from the imaginary

part of the Polyakov loop �̂I. For improved gauge actions
such as Sg ¼ �6Nsite�½c0ðplaquetteÞ þ c1ðrectangleÞ�,
additional c1 �Oð�4Þ terms must be contained in
Eqs. (5) and (6), where c1 is the improvement coefficient
and c0¼1�8c1. However, since the improvement term
does not affect the physics, we will cancel these terms by
a shift of the coefficient c1.
At a first-order transition point, Veff shows a double-well

shape as a function of P, and, equivalently, the curvature of
the potential d2Veff=d

2P takes a negative value in a region
of P. To observe this behavior,�must be adjusted to be the
first-order transition point. However, from Eqs. (3) and (4),
d2Veff=dP

2 is independent of �. The fine tuning is not
necessary in this case [8]. Moreover, d2Veff=dP

2 over the
wide range of P can be easily obtained by combining data
obtained at different �. We therefore focus on the curva-
ture of the effective potential to identify the nature of the
phase transition.
Denoting h ¼ 2Nfð2�hÞNt for Nf degenerate Wilson

quarks, or h ¼ Nf=ð4� ð2mhÞNtÞ for the staggered

quarks, we obtain lnRðP;�; �h; 0;�0Þ ¼ ln �RðP; h; 0Þ þ
ðplaquette termÞ þOð�Ntþ2

h Þ for � ¼ �h ¼ 0 with

�RðP; h; 0Þ ¼ hexp½6hN3
s �̂�iP: fixed;�0

: (7)

Notice that �RðP;h; 0Þ does not depend on �0. The pla-
quette term does not contribute to d2Veff=dP

2 and can be
absorbed by shifting � ! �� � �þ 48Nf�

4
h for Wilson

quarks. Moreover, one can deal with the case with non-

degenerate masses by adopting h ¼ 2
PNf

f¼1ð2�fÞNt or h ¼
ð1=4ÞPNf

f¼1ð2mfÞ�Nt . Thus, the choice of the quark action

is not important. In the following, we discuss the mass
dependence of �R through the parameter h.
Numerical results.—We use the two-flavor QCD con-

figurations generated with p4-improved staggered quark
and Symanzik-improved gauge actions in Ref. [10], thus

P̂ ¼ �Sg=ð6Nsite�Þ. The lattice size Nsite is 16
3 � 4. The

data are obtained at sixteen values of � from � ¼ 3:52 to
4.00 keeping the bare quark mass to ma ¼ 0:1. The num-
ber of trajectories is 10 000–40 000, depending on �. The
corresponding temperature normalized by the pseudo-
critical temperature is in the range of T=Tc ¼ 0:76 to
1.98, and the pseudocritical point is about� ¼ 3:65, where
the ratio of pseudoscalar and vector meson masses is
mPS=mV � 0:7. All configurations are used for the analysis
at zero density, while the finite density analysis is per-
formed every 10 trajectories. Further details on the simu-
lation parameters are given in Ref. [10]. The same data set
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is used to study the phase structure of two-flavor QCD at
finite density in Ref. [8].

We first calculate the potential in two-flavor QCD at
zero density, V0ðP;�Þ, the first term in Eq. (3). Because
the finite temperature transition is crossover for two-
flavor QCD at a finite quark mass, the distribution function
is always Gaussian type. We thus evaluate the curvature
of V0 using an identity for the Gaussian distribution,
d2V0=dP

2 ¼ 6Nsite=�P, where �P is the plaquette suscep-
tibility, �P � 6NsitehðP� hPiÞ2i. The slope of V0 in the
heavy quark limit can be also measured using an equation
derived from Eqs. (3) and (4). When one performs a
simulation at �0, the slope is zero at the minimum of

V0ðP;�0Þ, and the minimum is realized at P � hP̂i�0
.

Hence, we obtain dV0=dPðhP̂i�0
; �Þ ¼ �6ð�� �0ÞNsite

[11]. The result of d2V0=dP
2 is plotted in the bottom panel

of Fig. 1. The circle symbols with dashed lines are calcu-
lated by �P. The square symbols are computed by the
numerical differential of dV0=dP obtained at the minimum
of V0. dV0=dP are the squares in Fig. 2. These results
obtained by two different methods are consistent.

Zero density.—In the calculation of �RðP; h; 0Þ, we use
the delta function approximated by �ðxÞ � 1=ð� ffiffiffiffi

�
p Þ�

exp½�ðx=�Þ2�, where � ¼ 0:0025 is adopted consulting
the resolution and the statistical error. Because �RðP; h; 0Þ is
independent of �, we mix all data obtained at different �

as is done in Ref. [8]. The results for ln �RðP;h; 0Þ are shown
by solid lines in the top panel of Fig. 1 for h ¼ 0:01–0:07. A
rapid increase is observed aroundP� 0:82. It is also impor-
tant to note that the gradient becomes larger as h increases.
The second derivative d2 ln �R=dP2 is calculated by

fitting ln �R to a quadratic function of P with a range of
P	 0:015 and repeating with various P. The results are
plotted in Fig. 1 (bottom), where d2V0=dP

2 is also shown
as the circles or the squares with dashed lines. This figure
shows that d2ðln �RÞ=dP2 becomes larger with h, and
the maximum around P ¼ 0:81 exceeds d2V0=dP

2 for
h > 0:06. This indicates that the curvature of the effective
potential, d2Veff=dP

2 ¼ d2V0=dP
2 � d2ðln �RÞ=dP2, van-

ishes at h� 0:06 and a region of P where the curvature
is negative appears for large h. We estimated the critical
value hc at which the minimum of d2Veff=dP

2 vanishes and
obtained hc ¼ 0:0614ð69Þ.
To see the appearance of the first-order transition in a

different way, we plot dVeff=dP at finite h for �� ¼ 3:65 in
Fig. 2. The shape of the dVeff=dP is independent of �
because d2Veff=dP

2 is �-independent. dVeff=dP is mono-
tonically increasing when h is small, indicating that the
transition is crossover. However, the shape of dVeff=dP
turns into an S-shaped function at h� 0:06, corresponding
to the double-well potential.
We defined the parameter h ¼ 2Nf � ð2�hÞNt for the

Wilson quark. Then, the critical �hc corresponding hc
decreases as �hc ¼ ½hc=ð2NfÞ�1=Nt=2 withNf, and the trun-

cation error from the higher-order terms in �h becomes
smaller asNf increases. The application range of the hopping

parameter expansion was examined in quenched QCD simu-
lations with Nt ¼ 4, by explicitly measuring the size of the
next-to-leading-order (NLO) terms of the expansion [12].
They found that the NLO contribution becomes comparable
to that in the leading order at �h � 0:18. Hence, this method
may be applicable up to around�h � 0:1. For instance, in the
case of Nf ¼ 10 with Nt ¼ 4, �hc is 0.118.

Nonzero density.—Finally, we turn on a chemical poten-
tial � for two light quarks and �h for Nf flavors, and0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
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discuss the � dependence of the critical mass. Because the
strange chemical potential is small in the heavy-ion
collisions, the 2þ 1-flavor case with �h ¼ 0 corresponds
to the experiments. As discussed above, we can investi-
gate the critical region easily for large Nf. �RðP;h;�Þ
is then given by hðdetMðml;�Þ= detMðml; 0ÞÞ2 �
ðdetMðmh;�hÞ= detMð1; 0ÞÞNf iP: fixed. The quark deter-
minant is computed using the Taylor expansion of
ln½detMðml;�Þ= detMðml; 0Þ� in terms of �=T up to
O½ð�=TÞ6� and the Gaussian approximation is applied to
avoid the sign problem as explained in Ref. [8]. This
approximation is valid for small �. The truncation error
has been estimated comparing the results up to Oð�4Þ
and Oð�6Þ for �=T 
 2:5 and is found to be small [8].
The left panel of Fig. 3 shows the curvatures of V0 and
ln �RðP;h;�Þ at �=T¼1, �h¼0. The maximum value of
d2 ln �RðP;h;�Þ=dP2 is larger than that at � ¼ 0. This
means the critical h is smaller at finite �. Figure 3 (right)
shows the critical value of h as a function of � for �h ¼ 0
(circles) and �h ¼ � (diamonds). In the region above this
line, the effective potential has the negative curvature
region, indicating the transition is of first order. It is clear
that the first-order region becomes wider as � increases.
If the same behavior is observed in ð2þ 1Þ-flavor QCD,
this gives the strong evidence for the existence of the
critical point at finite density in the real world.

Although this analysis is valid only for large Nf, it gives

a frame of reference for the study of critical mass at finite
�. Notice that ln �RðP; h;�Þ is given by the sum of
ln �RðP; 0; �Þ and ln �RðP; h; 0Þ approximately and that the
behavior of ln �RðP;h; 0Þ in Fig. 1 is very similar to that of
ln �RðP; 0; �Þ in Figs. 5 and 7 in Ref. [8]. ln �RðP; 0; �Þ is
estimated from the quark number susceptibility at small �
and ln �RðP; h; 0Þ is obtained from the Polyakov loop at
small �h. Both the quark number susceptibility and the
Polyakov loop rapidly increase at the same value of P near

the transition point, which enhances the curvature of ln �R.
Therefore, the critical h decreases with � or equivalently
the critical � decreases with h. The same argument is
possible for (2þ 1)-flavor.
Conclusion and outlook.—We studied the phase struc-

ture of (2þ Nf )-flavor QCD to explore the realizability of

the EW baryogenesis in technicolor scenario and to under-
stand properties of the finite density QCD. Fixing the mass
of two light quarks, we determined the critical mass of the
other Nf quarks separating the first-order and crossover

regions. The critical mass is found to become larger with
Nf. Furthermore, the chemical potential dependence of the

critical mass is investigated for large Nf, and the critical

mass is found to increase with �.
The next step for the estimation of the baryon number

asymmetry in TC scenario is to quantify the strength of the
first-order phase transition. Another interesting application
of our method is to study universal scaling behavior near
the tricritical point. If the chiral phase transition in the two
flavor massless limit is of second order, the boundary of the
first-order transition region mc

l ðmhÞ is expected to behave

as mc
l �jmtri:

h �mhj5=2 in the vicinity of the tricritical point,
ðml;mh;�Þ ¼ ð0; mtri:

h ; 0Þ, from the mean field analysis.

This power behavior is universal for any Nf. The density

dependence is important as well, which is expected to be
mc

l � j�j5 [13]. Starting from large Nf, the systematic

study of properties of QCD phase transition is possible.
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