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Laser frequency noise is a dominant noise background for the detection of gravitational waves using

long-baseline optical interferometry. Amelioration of this noise requires near simultaneous strain

measurements on more than one interferometer baseline, necessitating, for example, more than two

satellites for a space-based detector or two interferometer arms for a ground-based detector. We describe a

new detection strategy based on recent advances in optical atomic clocks and atom interferometry which

can operate at long baselines and which is immune to laser frequency noise. Laser frequency noise is

suppressed because the signal arises strictly from the light propagation time between two ensembles

of atoms. This new class of sensor allows sensitive gravitational wave detection with only a single

baseline. This approach also has practical applications in, for example, the development of ultrasensitive

gravimeters and gravity gradiometers.
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The observation of gravitational waves will open a new
spectrum in which to view the Universe [1]. Existing
detection strategies are based on long-baseline optical
interferometry [2,3], where gravitational waves induce
time-varying phase shifts in the optical paths. Spurious
phase shifts arising from laser frequency and phase noise
are suppressed through multiarm configurations which
exploit the quadrupolar nature of gravitational radiation
to separate gravitational wave induced phase shifts from
those arising from laser noise. In the absence of such noise,
a single-baseline optical interferometer, e.g., a Fabry-Perot
interferometer, would suffice for gravitational wave detec-
tion. In these detectors, stringent constraints are also placed
on the mechanical motion of the interferometer optics in
order to avoid optical path length fluctuations which would
otherwise obscure the gravitational wave signals.

We propose a new approach, based on recent advances in
optical frequency control and atom interferometry, which
directly avoids laser frequency noise and naturally miti-
gates mechanical noise sources. The approach draws on the
development of light-pulse gravity gradiometers, where
Doppler-sensitive two-photon optical transitions are used
to measure the differential acceleration of two spatially sepa-
rated, free falling, laser cooled atomic ensembles [4–6]. For
these sensors, the optical interrogation is configured so that
the same laser beams interrogate both ensembles of atoms
along a common line of sight. This significantly suppresses
laser frequency noise, but does not remove it completely
due to the time delay introduced by the travel time of the
light between ensembles and the need for each of the two
counterpropagating laser beams to temporally overlap
(in order to drive the two-photon transitions) [5,7]. For
shorter baseline instruments (e.g., 1 m gravity gradiome-
ters), this noise source is relatively benign. For longer
baseline gravitational wave detectors (e.g., 10–1000 km

baseline atomic gravitational wave interferometric sensor
proposals described in Refs. [8,9]), it becomes a dominant
noise source [10]. It also places stringent limits on knowl-
edge of residual accelerations of the laser platform, which
manifest themselves as Doppler shifts on the frequency of
the light in the inertial frame of the atoms.
Laser noise would nearly disappear if the atomic tran-

sitions were driven with a single laser pulse since the laser
frequency noise in each pulse would be common to both
atom interferometers and would cancel in the differential
measurement. This follows from the relativistic formula-
tion of atom interferometry in Refs. [11,12] since the laser
phase of a pulse is set when the pulse is emitted and does
not change as it propagates along the null geodesic con-
necting the laser to the atoms.We propose a laser excitation
protocol which is based solely on single-photon transitions
in order to exploit this noise immunity and which is capable
of achieving scientifically interesting strain sensitivities.
In an optical interferometric gravitational wave detector,
the relative phases of the interfering optical fields serve as
proxies for the propagation time of the light along the
interferometer arms. In the proposed approach, gravita-
tional waves are instead sensed by direct measurement of
the time intervals between optical pulses, as registered by
atomic transitions which serve as high stability oscillators.
A new type of atom interferometer.—Because of atomic

momentum recoil in the absorption and stimulated emis-
sion of photons during optical interactions, the proposed
pulse sequence, detailed below, can be understood as a
variant of a light-pulse de Broglie wave interferometer in a
Mach-Zender configuration [13–15]. A prototypical exci-
tation sequence can be described as a combination of beam
splitter and mirror segments.
For the beam splitter, the lasers are pulsed as in Fig. 1.

The primary laser is taken to be at x ¼ 0, the left-hand side
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of the figure, the secondary laser is taken at x ¼ L, the
right-hand side of the figure. The atom begins at x ¼ x0 in
the ground state. The initial pulse at time t ¼ 0 is a �=2
pulse which splits the atom’s wave function in two
(for simplicity, we neglect spontaneous emission from
the excited state). Some time after this reaches x ¼ L, a
� pulse is fired from the secondary laser which is Doppler
tuned to interact only with the half of the atomic wave
function which was originally excited. In Fig. 1 the second
pulse is taken to leave at the time L=c when the first pulse
arrives at x ¼ L, but in fact it is only necessary that the
second pulse leaves after this time. After the initial pair of
pulses, to make a large momentum transfer (LMT) beam
splitter N � 1, more pairs of � pulses are sent, each pair
having the first pulse from the primary laser and the second
from the secondary laser. The frequencies of these pulses
are tuned so they interact only with the faster half of the
atom. This is shown in Fig. 1 for N ¼ 3. This leaves half of
the atom’s wave function in the ground state with
unchanged momentum (the left-hand solid line in Fig. 1)
and gives a momentum of 2N@k to the other half of the
atom, where k is the wave vector of each pulse. This
sequence makes an LMT beam splitter using only single-
photon atomic transitions. Note that, according to the
standard rules which govern the laser-atom interactions,
the phase of the laser field is read into the atomic coherence
during each of the atomic transitions.

The basic mirror sequence is three � pulses, alternately
from the primary and secondary lasers, as shown in the
middle of Fig. 2. In general, there are several ways to
realize this sequence. It can begin either from the primary

laser (as shown in Fig. 2) or from the secondary laser. The
pulses are tuned to interact only with certain halves of the
atom, as indicated by the dots in Fig. 2. To make the entire
LMT mirror pulse, N � 1 pairs of laser pulses are added
before the basic mirror sequence to slow down the fast half
of the atom, the exact opposite of the initial beam splitter.
Similarly, N � 1 pairs are added after the basic mirror seq-
uence to accelerate the other half of the atom. This reverses
the momenta of the two incoming halves of the atom’s
wave function. The slow half gets a momentum kick of
2N@k, the fast half loses 2N@k.
Using a beam splitter-mirror-beam splitter sequence

allows the atom interferometer to close, so that the two
halves of the atom’s wave function overlap at and can be
interfered by the final beam splitter. The phase difference
is read out by measuring the atom populations in the
interferometer output ports. The mirror pulse is started at
time t ¼ T and the final beam splitter is started at time
t ¼ 2T þ L

c . This is shown in each half of Fig. 2.

This type of atom interferometer acts effectively as an
accelerometer. If the atom does not accelerate, the time
spent in the excited state is the same for each half of the
atom’s wave function and there is no phase difference.
However, if the atom accelerates, this time is not the
same. Since the atom accumulates phase faster in the
excited state, this gives rise to a phase shift proportionally
to the acceleration. Interestingly, the phase shift is read
into the atom during the relatively short beam splitter and
mirror sequences themselves, not during the large inter-
rogation time�T between them. Nevertheless, these phase
shifts scale proportionally to T since they depend on the
change in the light travel time across the baseline between
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FIG. 1 (color online). A space-time diagram of our proposed
LMT beam splitter with N ¼ 3. The solid (blue) lines indicate
the motion of an atom in the ground state, the dashed (red) lines
indicate the atom in the excited state. Light pulses from the
primary and secondary lasers are incident from the left
(dark gray) and the right (light gray), respectively. Dots indicate
the vertices at which the laser interacts with the atom.
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FIG. 2 (color online). A space-time diagram of the proposed
configuration of a differential measurement between two atom
interferometers beginning at positions x1 and x2. The lines are
as in Fig. 1. For clarity, the beam splitters shown are not LMT;
i.e., here N ¼ 1.

PRL 110, 171102 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

26 APRIL 2013

171102-2



the beam splitter and mirror sequences. The phase shift
(or sensitivity) of this type of atom interferometer also scales
withN. The leading order phase shift in a local gravitational
field is �N!agT

2=c, where !a is the atomic energy level
difference and g is the acceleration due to gravity
(here assumed constant in space and time). The phase shift
due to a gravitational wave is approximately the same with g
replaced by the acceleration caused by the gravitational
wave. Intuitively, the factor of N arises because the signal
comes from the extra time spent in the excited state [the
dashed (red) lines in Fig. 2)], which increases linearly withN.

These leading order phase shifts are proportional to the
atomic energy difference !a, not to the laser frequency
! ¼ kc. This is a known difference between atom optics
based on two-photon Raman or Bragg transition (where
!a � 1 eV) and a single-photon transition (where !a is
large, �1 eV) [11]. In practice, the laser must be tuned so
that! is close to!a in order to drive the atomic transition.

A differential measurement.—A single interferometer of
the type described above will have laser noise, but this
can be removed by a differential measurement between
two such interferometers (similar to the scheme proposed
in Refs. [8,9,16]). The primary and secondary lasers are
separated by a large distance L, with atom interferometers
operated near them. The atom clouds are initially prepared
as described in Ref. [8]. These two widely separated atom
interferometers are run using common laser beams
(see Fig. 2) and their differential phase shifts measured.
Importantly, for any given interrogation, the same laser
beam drives both interferometers. For example, the pulse
from the primary laser at time t ¼ 0 triggers the initial
beam splitter for both interferometers and the pulse from
the secondary laser at time t ¼ L=c completes this beam
splitter, again for both interferometers. We will show that
the differential phase shift between these interferometers
contains a gravitational wave signal proportional to the
distance between them. However, since the same laser
pulse operates both interferometers, the differential signal
is largely immune to laser frequency noise. This idea has
some similar features to the proposal described in Ref. [17],
where a single laser only is used to interrogate two spatially
separated atomic ensembles.

To see the effect of a gravitational wave on the differ-
ential phase between the two interferometers, assume that
one interferometer is at x1 ¼ 0 in Fig. 2 while the other is
at x2 ¼ L and T � L=c. In the absence of a gravitational
wave, each arm spends a time L=c in the excited state
leading to a null result in each interferometer. Note,
though, that the arms of the interferometer at x1 spend
time L=c in the excited state in the beginning and the
middle of the interferometer, while the arms of the inter-
ferometer at x2 spend time L=c in the excited state in the
middle and end (see dashed lines in Fig. 2). In the presence
of a gravitational wave of strain h and frequency !, the
distance between the atom interferometers oscillates in

time. This affects the laser pulse travel time which
in turn affects the relative time spent by each atom
interferometer arm in the excited state (see Fig. 2).
When T � 1=! the distance changes by �hL in time T
(assuming !L=c � 1). Hence, the two interferometers
spend a slightly different amount of time �h L

c in the

excited state. This leads to a differential phase shift
between the interferometers of �!ahL=c. For a LMT
sequence with N pulses, the phase shift is enhanced by N
since it adds during each pulse. A fully relativistic calcu-
lation following the formalism of Ref. [11] yields the
differential phase shift to be

�� ¼ 4N!ah

c
ðx1 � x2Þsin2

�
!T

2

�
sinð�0 þ!TÞ; (1)

proportional to the baseline x1 � x2 � L. �0 in this
expression is the phase of the gravitational wave at the
start of the experiment, whose change (�0 ¼ !t0) causes a
time dependent phase shift in the experiment.
The gravitational wave signal is due to the oscillation

of the laser ranging distance between the two interferome-
ters. The atoms effectively measure the light travel time
across the baseline. Thus, the lasers do not serve as a clock
and so do not need a highly stable phase evolution.
Remarkably, only the constancy of the speed of light across
the baseline is relevant. This is an important change from
all other interferometric gravitational wave detection
schemes, where the laser serves the role of a phase refer-
ence, thus requiring additional noise mitigation strategies
(e.g., additional measurement baselines).
Backgrounds.—We will now discuss possible noise

sources for the proposed scheme. We distinguish between
two classes of noise: intrinsic laser noise and kinematic
noise. Intrinsic laser noise refers to jitters in the phase and
frequency of the laser while kinematic noise is caused by
the acceleration noise of the laser platform and jitter in the
timing between the interferometer pulses. The phase of a
laser pulse does not evolve during its propagation in vac-
uum from the laser to the location of the atom [18]. Hence,
the atoms record the phase of the laser which exists at the
emission time of the pulse. Since both interferometers are
operated by the same laser pulses, the intrinsic laser noise
read by both interferometers is identical and will cancel
in the differential phase. The kinematic sources of noise
affect both the imprinted laser phase and the amount of
time spent by the arms of the interferometer in the excited
state. Again, the noise from the imprinted laser phase will
completely cancel in the differential measurement since
the same laser pulses are used to drive both interferome-
ters. However, any kinematic difference such as a relative
velocity �v between the two interferometers will result in
differences in the time spent in the excited state between
the two interferometers, leading to a differential phase shift

suppressed by �v
c .
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Following the formalism of Ref. [11] we calculate the
differential phase shifts (shown in Table I) caused by plat-
form acceleration noise �a, jitter �T in the time between
pulses, and laser frequency jitter �k. Each of the resulting
error terms has its origin only in an initial velocity mis-
match �v between the two atomic sources and is thus

suppressed by �v
c & 3� 10�11. In practice, the frequency

stability requirements are likely limited by the Rabi fre-
quency associated with the atomic transitions [21]. Also
included in the analysis are corrections related to the finite
duration �� of the laser pulses [22]. The frequency depen-
dence is estimated from the condition!T � � [see Eq. (1)],
which determines the low-frequency corner of the antenna
response [8]. We note that this differential measurement
scheme does not remove noise from wave front aberration
[23,24], since after diffraction aberrations are not generally
common to both interferometers. However, straightforward
noise mitigation schemes suggested in Refs. [9,25] can
successfully address these issues. Finally, ellipse-specific
methods [6,26,27] can be used to extract the differential
phase shift in the presence of the common-mode laser phase
noise. This is accomplished by operating successive inter-
ferometers at a sampling rate higher than the gravitational
wave frequency, as described in Refs. [8,9,16].

Atomic implementation.—The proposed LMT scheme
requires a two-level system with a large (optical) energy
difference !a and a long excited state lifetime �. To
maintain interferometer contrast, the total time �NL=c
that the atom spends in the excited state during the inter-
ferometer sequence cannot exceed �. Taking � ¼ NL=c as
an upper bound, we can write the peak phase sensitivity in
Eq. (1) in terms of the quality factor Q ¼ !a� of a given
atomic transition, resulting in ��max ¼ 4!aðNL=cÞh ¼
4Qh. This suggests that the same atoms typically selected
for optical clocks because of their high Q transitions
are also appropriate for this proposal. An optical transi-
tion with mHz linewidth has Q> 1017, which could

support a strain sensitivity h < 10�21=
ffiffiffiffiffiffi
Hz

p
assuming

atom shot-noise limited phase noise �� ¼ 10�4=
ffiffiffiffiffiffi
Hz

p
.

For gravitational wave detection with N ¼ 300 and base-
line L ¼ 1000 km, we have 2NL=c ¼ 2 s, requiring at
least a sub-Hz linewidth clock transition.
The alkaline-earth-like atoms (e.g., Sr, Ca, Yb) are prom-

ising candidates. Consider, for example, the clock transition
in atomic strontium (5s21S0 ! 5s5p3P0). In

87Sr this tran-
sition is weakly allowed with a linewidth of 1 mHz and a
saturation intensity of 0:4 pW=cm2 [28]. The low saturation
intensity enables long-baseline configurations (>10 km)
for suitably cold atomic ensembles [29]. In addition to its
high Q, this transition is also desirable because it exhibits
manageable sensitivity to environmental backgrounds. For
example, the blackbody shift has a temperature coefficient
of�2:3 Hz ðT=300 KÞ4 [30]. At T ¼ 100 K, this implies a

temperature stability requirement of & 3 mK=
ffiffiffiffiffiffi
Hz

p
for a

strain sensitivity of h ¼ 10�20=
ffiffiffiffiffiffi
Hz

p
at 10 mHz. For mag-

netic fields, simultaneous or interleaved interrogation of
each of the linear Zeeman sensitive transitions, as described
in Ref. [30], results in a residual quadratic Zeeman coeffi-
cient of �0:23 Hz=G2 [30] and also enables measurement
of the residual magnetic field. This coefficient is signifi-
cantly more favorable than that of the Rb interferometers
previously analyzed [9]. In principle, a second atomic spe-
cies could be used to independently characterize these shifts
in order to provide further suppression. ac Stark shift related
backgrounds appear to be negligible. Many other back-
grounds are similar to those discussed in Refs. [8,9].
Discussion.—This configuration enables a high precision

measurement of the relative acceleration between two in-
ertial atom clouds. The high Q atomic transition provides
the necessary time reference. The laser is not used as a
clock and thus laser frequency noise does not affect the
measurement, unlike all other interferometric gravitational
wave detection schemes. Furthermore, an atom is an excel-
lent inertial proof mass. A neutral atom’s level structure is
universal and is significantly less sensitive to environmental
perturbations than conventional macroscopic references
such as a laser or a drag-free proof mass, whose physical
parameters (thermal and electrodynamic properties) can
vary significantly. As we have shown, this type of atom
interferometer would allow detection of gravitational waves
with the same sensitivity as in the proposals described in
Refs. [8,9,16] but with significantly reduced requirements
on laser and platform stability (as in Table I), enabling
single-baseline gravitational wave detection.
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