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We investigatemodels inwhich blocking can interrupt a particulate flow process at any time. Filtration, and

flow in micro or nanochannels and traffic flow are examples of such processes. We first consider concurrent

flowmodels where particles enter a channel randomly. If at any time two particles are simultaneously present

in the channel, failure occurs. The key quantities are the survival probability and the distribution of the

number of particles that pass before failure.We then consider a counterflowmodel with two opposing Poisson

streams. There is no restriction on the number of particles passing in the same direction, but blockage occurs

if, at any time, two opposing particles are simultaneously present in the passage.

DOI: 10.1103/PhysRevLett.110.170601 PACS numbers: 05.40.�a, 05.60.Cd

Introduction.—Processes involving the flow of particles
through channels may entail blocking or failure. A good
example for a concurrent flow is provided by the industri-
ally important process of filtration [1–5]. In particular, the
model of Roussel et al. [5] successfully accounted for
experimental data by assuming that clogging may occur
when two grains are simultaneously present in the vicinity
of a mesh hole, even though isolated grains are small
enough to pass through the holes. A conceptually similar
situation is a flimsy bridge that can only support the weight
of one car at a time. If ever two cars are on the bridge at the
same time, it collapses.

A second class of processes involves two counterflowing
streams of particles. For example, in remote areas many of
the roads are single track. Two approaching vehicles can-
not pass each other except at rather infrequent, and short,
passing places. In this situation, we would like to know
the failure probability of finding two opposing cars in the
stretch of road between two passing places.

Many traffic models based on lattice gases have been
proposed [6–13], including the totally asymmetric simple
exclusion processes (TASEP) [14,15] and related models
[16]. The so-called bridge models [15,17–22] consider two
TASEP processes with oppositely directed flows, but allow
exchange of particles on the bridge.

Similar processes are also found in numerous biological
applications involving channels. Examples include bidirec-
tional macromolecular flow in microchannels [23], ion
channels that can be clogged by toxins or medicines
[24–26], and the antibiotic gramicidin that forms univalent
cation-selective channels of 0.4 nm diam in phospholipid
bilayer membranes. The transport of ions and water
throughout most of the channel length is by a single file
process; that is, cations and water molecules cannot pass
each other within the channel [27].

In this Letter we propose, and obtain exact solutions
for, stochastic models in which particle flow in a channel
can be instantaneously interrupted by a clogging event.
The quantities of interest are the probability of blockage
(failure) as a function of time and the final outcome, i.e.,
the number and type of particles that get through the
channel before blockage occurs. These models are com-
plementary to the lattice gas models in that they are
continuous in both space and time and are most appropriate
for low density flows.
Concurrent flow model.—Particles enter a passage of

length L according to a homogeneous Poisson process
where

PnðtÞ ¼ ð�tÞn
n!

expð��tÞ (1)

gives the probability that n particles enter the passage in
the time interval (0, t). We assume that all particles move
with constant velocity v so that the transit time, � ¼ L=v,
is constant. Blockage (failure) occurs at the instant when
two particles are present in the channel at the same
time [see Fig. 1(a)]. This leads us to consider the survival
probability psðtÞ, the probability that blockage (failure)
does not occur in the time interval (0, t). Clearly,
psð0Þ ¼ 1 and psð1Þ ¼ 0. The probability that blocking
occurs between time t and tþ dt is given by fðtÞdt where
fðtÞ ¼ �dpsðtÞ=dt.
To solve the model we introduce the n particle survival

probability qsðn; tÞ which denotes the joint probability of
surviving up to t and that n particles have entered the
passage during this time. The survival probability is simply
psðtÞ ¼ P

n�0qsðn; tÞ. The evolution of the qsðn; tÞ is
given by
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dqsð0; tÞ
dt

¼��qsð0; tÞ
dqsð1; tÞ

dt
¼�qsð0;tÞ��qsð1;tÞ

dqsðn;tÞ
dt

¼�qsðn�1;t��Þe�����qsðn;tÞ; n�2: (2)

The final equation implements a non-Markovian con-
straint: in passing from the state {‘‘not blocked’’, n� 1g
to the state {‘‘not blocked’’, ng it is necessary that no
particle enter in the previous time interval (t� �, t) and
that a single particle enter in the time interval t to tþ dt.
These probabilities are given by e��� and �dt, respec-
tively. By introducing the generating function we obtain,
as detailed in the Supplemental Material [28],

psðtÞ ¼
�
1þ X1

n¼0

�ðt� n�Þ ½�ðt� n�Þ�nþ1

ðnþ 1Þ!
�
e��t; (3)

where �ðtÞ is the Heaviside function.
The long time behavior of the survival probability can be

obtained by approximating the sum in Eq. (3) as an integral
and evaluating it using the saddle-point (Laplace) method.
The result is

psðtÞ � e�ð��ðLW ð��Þ=�ÞÞt; (4)

where LWðxÞ is the Lambert-W function (see Sect. 1.2 of
the Supplemental Material [28]). From its small x behavior
one can deduce that, when �� � 1, the exponent of the

exponential decay, �� LW ð��Þ
� ’ �2�, depends nonlinearly

on the rate �. This complexity arises from the large pos-
sible number of event sequences before failure.

The mean survival time is given by

hti ¼
Z 1

0
psðtÞdt ¼ 2e�� � 1

�ðe�� � 1Þ (5)

and is consistent with Eq. (4) when �� � 1.

Figure 2 illustrates the time dependent properties of the
concurrent flow model. The curves showing the probability
of failure at time t, fðtÞ, exhibit a cusp at t ¼ �. This is the
first time at which particles that have entered previously can
exit the channel (which is empty at t ¼ 0), leading to a rapid
decrease in the probability of blockage. The intensity of
the cusp depends on �, (df=dtj�� � df=dtj�þ ¼ �2e���),
and is less pronounced for large � as a second particle is
more likely to enter soon after the first, causing blockage.
The inset shows the survival probability and confirms the
accuracy of the asymptotic expression, Eq. (4).
A further quantity of interest is the distribution of num-

ber of particles that exit the channel before blockage
occurs. If n particles have entered the passage at failure,
the number that have successfully traversed is m ¼ n� 2.
At least two particles must enter before failure can occur.
Let hðmÞ denote the probability that when failure occurs m
particles have exited. If �ti denotes the time interval
between the entry of the ith and the (iþ 1)th particle, then

hðmÞ ¼
�Ym
i¼1

Prð�ti > �Þ
�
Prð�tmþ1 < �Þ: (6)

Using that Prð�t>�Þ¼e��� and Prð�t < �Þ ¼ 1� e���,
we find

hðmÞ ¼ e�m��ð1� e���Þ: (7)

The most probable situation is that no particles pass
before failure for all values of �. The mean number that
pass before failure is

hmi ¼ 1

e�� � 1
; (8)

which has the expected asymptotic behavior: hmi ! e���

for �� large and hmi ! ð��Þ�1 for �� small. Figure 3
illustrates that with decreasing �� the difference between
the mean, hmi, ofm and its most probable value (always 0)
increases and hðmÞ becomes flatter.

0 1 2 3 4 5 6 7 8 9 10
t/τ

0

0.2

0.4

0.6

0.8

1

f

0 2 4 6 8 10
t/τ

0

0.2

0.4

0.6

0.8

1

p s

FIG. 2 (color online). Probability that blockage occurs as a
function of time for �� ¼ 2, 1, 0.5 (most peaked to least peaked).
Cusps are present at t=� ¼ 1 (vertical dotted line). The inset
shows the survival probability for the same parameters together
with the asymptotic approximation, Eq. (4) (dashed lines).

FIG. 1 (color online). (a) Concurrent flow model: Particles
enter the left-hand side of a channel of length L at a (mean)
rate �. Blockage occurs when two particles are simultaneously
present in the channel. (b) Counterflow model: Two opposing
streams of particles enter the left- and right-hand sides of the
channel at rates �1 and �2, respectively. Blockage occurs when-
ever two opposing particles are simultaneously present in the
channel but there is no constraint on the number of particles
moving in the same direction.
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The above results can be generalized for a distribution
of transit times. If c ð�Þ is the normalized distribution of
transit times and assuming that � is constant, the mean
survival time is

hti ¼ 2� ~c ð�Þ
�½1� ~c ð�Þ� (9)

and the mean number of particles that pass before failure is

hmi ¼
~c ð�Þ

1� ~c ð�Þ ; (10)

where tilde denotes the Laplace transform, ~c ð�Þ ¼R1
0 e���c ð�Þd�. See Sect. 1.3 of the Supplemental

Material [28].
Counterflow model.—In this model particles of type 1

enter the channel of length L at the left at a rate �1 and
move towards the right at a speed v1. Particles of type 2
enter at the right at a rate �2 and move to the left at speed
v2: [see Fig. 1(b)] The transit times are �1 ¼ L=v1 and
�2 ¼ L=v2, respectively. We assume that particles enter
according to a Poissonian distribution so that the probabil-
ity that n1 (n2) particles of type 1 (2) enter the left (right)
side in the interval (0, t) is given by

PniðtÞ ¼
ð�itÞni
ni!

e��it with i ¼ 1; 2: (11)

A blockage occurs if at any time particles of both species
are present in the channel. Before this situation arises an
arbitrary number of particles can transit the passage in both
directions. If �i�i < 1 the average time interval between
entry of particles of type i is longer than the transit time. If,
on the other hand, �i�i > 1, a backlog of particles of type i
is likely to be present. Thus, the former situation is more
relevant physically.

We now outline the solution method. The device that
allows us to obtain an analytical solution in this case is
the introduction of functions pkðn1; n2; tÞ that denote the
probabilities that the system has survived until time t and
n1 particles of type 1 and n2 of type 2 have entered
the passage and the last particle to enter the passage
was of type k ¼ 1, 2. This choice provides a complete
partition of the event space into disjoint events allowing
us to write pðn1; n2; tÞ ¼ p1ðn1; n2; tÞ þ p2ðn1; n2; tÞ, n1,

n2 � 0, psð0; 0; tÞ ¼ p1ð0; 0; tÞ ¼ p2ð0; 0; tÞ (by conven-
tion) and psðtÞ ¼

P1
n1¼0

P1
n2¼0 pðn1; n2; tÞ.

The equations describing the time evolution of the prob-
abilities pkðn1; n2; tÞ are, e.g.,
dp1ðn1;n2;tÞ

dt
¼�ð�1þ�2Þp1ðn1;n2;tÞ
þ�1½p1ðn1�1;n2;tÞ
þp2ðn1�1;n2;t��2Þe�ð�1þ�2Þ�2� (12)

for n1 > 0 and n2 > 0. The last term of this equation
implements the constraint for the not-blocked state of
the channel (see the Supplemental Material [28]): in pass-
ing from the state {‘‘not-blocked’’, n1 � 1, n2, last particle
entered ¼ type2g to {‘‘not-blocked’’, n1, n2, last particle
entered ¼ type1g it is necessary that in the previous
time interval (t� �2, t) (i) no particle of type 1 or 2 enters
the channel (given by the exponential term) and (ii) a single
particle of type 1 enters between t and tþ dt. In analogy
with Eq. (2), this is indicative of the non-Markovian nature
of the process. The evolution equation for p2ðn1; n2; tÞ is
obtained from Eq. (12) by symmetry.
In addition, we have to consider the time evolution of the

boundaries (0, n2) and (n1, 0): obviously p2ðn1; 0; tÞ ¼
p1ð0; n2; tÞ ¼ 0 for n1, n2 � 1.

dp1ðn1;0;tÞ
dt

¼�ð�1þ�2Þp1ðn1;0;tÞþ�1p1ðn1�1;0;tÞ
(13)

with n1 � 1 and a corresponding equation for p2ð0; n2; tÞ.
To complete the configuration space, one must introduce
the probability that no particle is created in the time interval

(0, t), pð0; 0; tÞ and one has dpð0;0;tÞ
dt ¼ �ð�1 þ �2Þpð0; 0; tÞ

with pð0; 0; 0Þ ¼ 1 with solution pð0; 0; tÞ ¼ e�ð�1þ�2Þt.
As for the previous model, the solution is obtained by

introducing a generating function:

Gðz1; z2; tÞ ¼
X1
n1¼0

X1
n2¼0

zn11 zn22 pðn1; n2; tÞ (14)

from which the survival probability can be found as
psðtÞ ¼ Gð1; 1; tÞ.
After some calculation (see Sect. 2.1 of the

Supplemental Material [28]), we obtain

~Gðz1;z2;uÞ
¼ 1

1þ�1þ�2

�
1þ �1z1

uþ�2þ�1ð1�z1Þ
þ �2z2
uþ�1þ�2ð1�z2Þþ

�1�2z1z2
�

�
�
e�ð�1þ�2þuÞ�1þe�ð�1þ�2þuÞ�2þe�ð�1þ�2þuÞð�1þ�2Þ

�
�

�1z1
uþ�2þ�1ð1�z1Þþ

�2z2
uþ�1þ�2ð1�z2Þ

���
; (15)
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FIG. 3 (color online). Distribution of the number of particles
that pass before blockage occurs for different values of �� (left
and middle figures). The right graph shows the average number
as a function of the same parameter.
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where �¼½uþ�2þ�1ð1�z1Þ�½uþ�1þ�2ð1�z2Þ� �
�1�2z1z2e

�ð�1þ�2þuÞð�1þ�2Þ. This is the principal result for
the counterflow model from which most properties of
interest can now be easily obtained. In particular, the
mean survival time, hti ¼ ~psðu ¼ 0Þ, is

hti ¼ 1

�1 þ �2

�
1þ e�ð�1þ�2Þ�1 þ e�ð�1þ�2Þ�2

1� e�ð�1þ�2Þð�1þ�2Þ

þ �2
1 þ �2

2

�1�2

1

1� e�ð�1þ�2Þð�1þ�2Þ

�
: (16)

The three contributions have a simple physical meaning:
the first term corresponds to the situation where no species
exit the passage before failure. The second term corre-
sponds to situations where an even number of changes of
species occurs before failure, the last term to the situations
where an odd number of changes (larger than 1) of species
occurs before failure.

Note that when ð�1 þ �2Þ�i � 1,

hti � 1

�1�2ð�1 þ �2Þ ; (17)

corresponding to a regime where a large number of event
sequences contribute to the survival probability.

It is possible to perform a term-by-term inversion of the
Laplace transform to obtain the time-dependent survival
probability. For the case �1 ¼ �2 ¼ �, �1 ¼ �2 ¼ � the
result is (see the Supplemental Material [28])

psðtÞ¼e�2�tþ2
X1
k¼0

�ðt�2k�Þ
�
�e�2�tþe��ðtþ2k�Þ

�X2k
l¼0

ð�1Þl
l!

ð�ðt�2k�ÞÞl
�
þ2

X1
k¼0

�ðt�ð2kþ1Þ�Þ

�
�
e�2�t�e��ðtþð2kþ1Þ�Þ X2kþ1

l¼0

ð�1Þl
l!

�ð�ðt�ð2kþ1Þ�Þl
�
: (18)

For a given time, the solution contains a finite number of
nonzero terms. At large t, by using Laplace’s method, we
obtain

psðtÞ � e�ð��ðLW ð��e���Þ=�ÞÞt: (19)

Note that when �� � 1, psðtÞ � e�2�2�t is consistent with
Eq. (17). The average survival time is dominated by this
regime. The general solution is given in the Supplemental
Material [28] and Fig. 4 illustrates a particular case. Note
the presence of two cusps (�1 � �2) corresponding to the
two transit times.

It is more difficult to obtain hðm1; m2Þ, the probability
that m1 particles of type 1 and m2 particles of type 2 exit
the passage before blockage occurs. This is because there
is no simple relationship betweenm1,m2, and the numbers
n1; n2 that have entered the passage as is the case in the

concurrent flow model. However, the first few may be
obtained by direct calculation:

hð0; 0Þ ¼ p1ð1� e��2�1Þ þ p2ð1� e��1�2Þ; (20)

hðm1;0Þ¼pm1

1 p2ðe��2�1 �e�ð�1þ�2Þ�1e��1�2Þ; m1�1;

(21)

hð0;m2Þ¼p1p
m2

2 ðe��1�2 �e�ð�1þ�2Þ�2e��2�1Þ; m2�1;

(22)

and

hð1; 1Þ ¼ p1p2e
�ð�1þ�2Þð�1þ�2Þ½p1ðe�2�2 � e��2�1Þ

þ p2ðe�1�1 � e��1�2Þ�; (23)

where pi ¼ �i=ð�1 þ �2Þ, i ¼ 1, 2. See the Supplemental
Material [28] for details. The behavior of these functions
is illustrated in Fig. 5 for the nonrestrictive situation of a
constant total flux �1 þ �2 ¼ 1 apportioned continuously
between the left- and right-hand streams. As in the

0 5 10
t/τ 1

15 20
0.00

0.02

0.04

0.06f

0.08

0.10

0.12

FIG. 4 (color online). Probability of blockage, fðtÞ ¼
�dpsðtÞ=dt, as a function of time for the counterflow model.
�1 ¼ 0:5, �2 ¼ 0:2, �2=�1 ¼ 1 (red), �2=�1 ¼ 2 (blue), �2=�1 ¼
3 (green), �2=�1 ¼ 5 (black).
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FIG. 5 (color online). Probability of different outcomes in the
counterflow model as a function of p1 ¼ �1=ð�1 þ �2Þ, �1 þ
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[¼ hð2; 0Þ þ hð0; 2Þ þ hð1; 1Þ] (top to bottom) particles exit the
channel before blockage occurs.
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concurrent flow model, the most likely result is that block-
age occurs before any particles exit.

We conclude with an illustration of the theory: Let us
suppose that a single-track road is 0.5 km long and on
average 10 cars enter each side per hour. If we further
assume that all cars travel at a constant speed of 50 km=h
then the survival probability after 5 min is 0.876 and after
30 min it is 0.436. The mean survival time is 36 min.

In summary, we have developed stochastic models to
describe the probability of blocking in diverse physical
applications involving particulate flow. Both models can
serve as the starting point for more refined models tailored
to specific applications. For a filter composed of M inde-
pendent channels, the fraction that is active at time t is just
MpsðtÞ. With more effort, connected channels and revers-
ible blocking can also be treated within the same frame-
work. Clustering of the particulate streams can be modeled
using an inhomogeneous Poisson process where the inten-
sity is time-dependent, �ðtÞ.

We thank O. Bénichou, G. Oshanin, Ch. Pouzat,
L. Signon, and G. Tarjus for useful discussions. A. G. thanks
Italian PNR ‘‘Crisis Lab’’ for supporting the research.

[1] J. Hampton, S. Savage, and R. Drew, Chem. Eng. Sci. 48,
1601 (1993).

[2] L.M. Schwartz, D. J. Wilkinson, M. Bolsterli, and P.
Hammond, Phys. Rev. B 47, 4953 (1993).

[3] J. Lee and J. Koplik, Phys. Rev. E 54, 4011 (1996).
[4] S. Redner and S. Datta, Phys. Rev. Lett. 84, 6018 (2000).
[5] N. Roussel, T. L. H. Nguyen, and P. Coussot, Phys. Rev.

Lett. 98, 114502 (2007).
[6] D. Helbing, D. Mukamel, and G.M. Schütz, Phys. Rev.
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[20] S. Grosskinsky, G. Schütz, and R. Willmann, J. Stat. Phys.
128, 587 (2007).

[21] R. D. Willmann, G.M. Schütz, and S. Grosskinsky,
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[22] A. Jelić, C. Appert-Rolland, and L. Santen, Europhys.
Lett. 98, 40 009 (2012).

[23] N. Champagne, R. Vasseur, A. Montourcy, and D. Bartolo,
Phys. Rev. Lett. 105, 044502 (2010).

[24] R. Kapon, A. Topchik, D. Mukamel, and Z. Reich, Phys.
Biol. 5, 036001 (2008).

[25] Y. J. Kim, H. K. Hong, H. S. Lee, S. H. Moh, J. C. Park,
S. H. Jo, and H. Choe, J. Cardiovasc. Pharmacol. 52, 485
(2008).

[26] M. J. Twiner, G. J. Doucette, A. Rasky, X.-P. Huang,
B. L. Roth, and M.C. Sanguinetti, Chem. Res. Toxicol.
25, 1975 (2012).

[27] A. Finkelstein and O. Andersen, J. Membr. Biol. 59, 155
(1981).

[28] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.110.170601 for
details of the derivation of the survival probabilities and
their asymptotic behaviors for the concurrent and
countercurrent models. It also derives the mean survival
time for a distribution of transit times in the concurrent
flow model, as well as the distribution of the number and
type of particles that exit the channel before failure in the
countercurrent model.

PRL 110, 170601 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

26 APRIL 2013

170601-5

http://dx.doi.org/10.1016/0009-2509(93)80120-F
http://dx.doi.org/10.1016/0009-2509(93)80120-F
http://dx.doi.org/10.1103/PhysRevB.47.4953
http://dx.doi.org/10.1103/PhysRevE.54.4011
http://dx.doi.org/10.1103/PhysRevLett.84.6018
http://dx.doi.org/10.1103/PhysRevLett.98.114502
http://dx.doi.org/10.1103/PhysRevLett.98.114502
http://dx.doi.org/10.1103/PhysRevLett.82.10
http://dx.doi.org/10.1103/PhysRevLett.82.10
http://dx.doi.org/10.1103/RevModPhys.73.1067
http://dx.doi.org/10.1088/1742-5468/2010/06/P06002
http://dx.doi.org/10.1088/1742-5468/2010/06/P06002
http://dx.doi.org/10.1371/journal.pcbi.1002442
http://dx.doi.org/10.1371/journal.pcbi.1002442
http://dx.doi.org/10.1088/1742-5468/2012/06/P06009
http://dx.doi.org/10.1088/1742-5468/2012/06/P06009
http://dx.doi.org/10.1088/1742-5468/2010/08/P08024
http://dx.doi.org/10.1088/1742-5468/2010/08/P08024
http://dx.doi.org/10.1088/1742-5468/2011/10/P10014
http://dx.doi.org/10.1088/1742-5468/2011/10/P10014
http://dx.doi.org/10.1103/PhysRevE.86.026118
http://dx.doi.org/10.1103/PhysRevE.86.026118
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1103/PhysRevLett.74.208
http://dx.doi.org/10.1103/PhysRevLett.109.020603
http://dx.doi.org/10.1103/PhysRevLett.109.020603
http://dx.doi.org/10.1088/1751-8113/41/43/432002
http://dx.doi.org/10.1088/1751-8113/41/43/432002
http://dx.doi.org/10.1007/BF02178354
http://dx.doi.org/10.1088/0305-4470/28/21/011
http://dx.doi.org/10.1088/0305-4470/28/21/011
http://dx.doi.org/10.1007/s10955-007-9341-x
http://dx.doi.org/10.1007/s10955-007-9341-x
http://dx.doi.org/10.1209/epl/i2005-10110-7
http://dx.doi.org/10.1209/0295-5075/98/40009
http://dx.doi.org/10.1209/0295-5075/98/40009
http://dx.doi.org/10.1103/PhysRevLett.105.044502
http://dx.doi.org/10.1088/1478-3975/5/3/036001
http://dx.doi.org/10.1088/1478-3975/5/3/036001
http://dx.doi.org/10.1097/FJC.0b013e31818e65c2
http://dx.doi.org/10.1097/FJC.0b013e31818e65c2
http://dx.doi.org/10.1021/tx300283t
http://dx.doi.org/10.1021/tx300283t
http://dx.doi.org/10.1007/BF01875422
http://dx.doi.org/10.1007/BF01875422
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.170601
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.170601

