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Given a quantum error correcting code, an important task is to find encoded operations that can be

implemented efficiently and fault tolerantly. In this Letter we focus on topological stabilizer codes and

encoded unitary gates that can be implemented by a constant-depth quantum circuit. Such gates have a

certain degree of protection since propagation of errors in a constant-depth circuit is limited by a constant

size light cone. For the 2D geometry we show that constant-depth circuits can only implement a finite

group of encoded gates known as the Clifford group. This implies that topological protection must be

‘‘turned off’’ for at least some steps in the computation in order to achieve universality. For the 3D

geometry we show that an encoded gateU is implementable by a constant-depth circuit only ifUPUy is in
the Clifford group for any Pauli operator P. This class of gates includes some non-Clifford gates such as

the �=8 rotation. Our classification applies to any stabilizer code with geometrically local stabilizers and

sufficiently large code distance.
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Quantum error correcting codes play a central role in all
proposed schemes for fault-tolerant quantum computation.
By repeatedly measuring error syndromes and applying
corresponding correction operations, encoded states can
be stored reliably for extended periods of time [1,2].
Furthermore, many error correcting codes support a limited
set of protected gates that can be applied to encoded states
with a high fidelity without exposing them to the environ-
ment. For example, it is often possible to apply certain
encoded gates transversally, e.g., by a product of one-qubit
rotations on the physical qubits. Such transversal gates are
protected because an error in a single qubit location cannot
spread to other qubits. Furthermore, since a transversal
gate can be implemented in a single time step, it does not
introduce too many errors on its own. Another example is
the implementation of the CNOT gate by braiding of defects
in the surface code architecture [3,4]. Here protection
comes from the fact that the braiding process involves a
sequence of local maps between high-distance topological
codes and each local map is followed by an error correction.

Protected gates usually have a limited computational
power. For example, a general no-go theorem proved by
Eastin and Knill [3] asserts that for any error detecting
code, the set of transversal encoded gates is a finite group
and therefore cannot be computationally universal.
Furthermore, in the case of the surface codes, Sarvepalli
and Raussendorf showed [5] that all transversal encoded
gates must belong to the Clifford group (under certain extra
technical assumptions). To enhance the power of protected
gates, almost all existing fault-tolerant schemes resort to
preparation and distillation of certain quantum software
states [6,7], which substantially increases the space and
time overheads.

In this Letter we derive general limitations on the power
of protected gates for a large family of codes known as
topological stabilizer codes (TSC). The physical qubits of
a TSC can be laid out on a D-dimensional regular lattice
such that each syndrome bit is determined by a local
Pauli stabilizer supported in a region of radius Oð1Þ.
Furthermore, the minimal distance of a TSC can be made
arbitrarily large by increasing the lattice size.
TSCs are arguably among the most promising current

approaches to the experimental realization of fault-tolerant
quantum computation: the locality and Pauli structure of
the stabilizers permit syndrome extraction by relatively
simple measurement circuits. The placement of the qubits
on a regular lattice (especially in dimension D ¼ 2)
appears advantageous from an engineering viewpoint.
Furthermore, the dependence of the code distance on the
system size suggests that robustness essentially reduces to
a question of scalability. Not surprisingly, TSCs are the
basis of some of the best-studied proposed schemes for
fault-tolerant storage and computation. Indeed, the highest
currently known fault-tolerance thresholds were estab-
lished using TSCs [2,3,8].
The family of TSCs includes the 2D toric and surface

codes [9,10], the 2D color codes [11], modifications of
the above codes with twists [12] or punctured holes [3], as
well as the punctured 3D color code developed by Bombin
and Martin-Delgado [13]. It also encompasses 3D models
of a self-correcting quantum memory found recently by
Haah [14] and Michnicki [15]. The assumption that each
stabilizer is a Pauli operator is essential for our analysis.
Hence, our theorems do not apply to more general topo-
logical codes such as quantum double models [10] or the
Turaev-Viro codes [16].
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To formalize the intuitive notion of a protected gate, we
consider encoded unitary gates that can be implemented by
a constant-depth quantum circuit that maps the code space
of a TSC to itself (or a code space of another TSC). Here
we assume that all gates in the circuit are geometrically
local; that is, each gate has support on a region of radius
Oð1Þ. By analogy with a transversal gate, a noisy constant-
depth circuit does not introduce too many errors on its own
since it can be executed in a constant time. Propagation of
preexisting errors is strongly limited by the causality: any
preexisting single-qubit error can only spread to an error
supported on a ‘‘light cone’’ of widthOð1Þ. In other words,
constant-depth circuits preserve the set of ‘‘local’’ errors
and are thus naturally fault tolerant. Let us say that an
encoded unitary gate is topologically protected if it can be
implemented by a constant-depth circuit as described
above. It is worth pointing out that, in contrast to transver-
sal gates, constant-depth circuits do not form a group
(since the circuit’s depth may grow under compositions).

To state our main result, let us define the Clifford hier-
archy (CH) introduced originally by Gottesman and
Chuang [17] in the context of gate teleportation. It involves
a nested family of sets of k-qubit unitary operators.
At the lowest level of the hierarchy is the Pauli group
C1ðkÞ generated by single-qubit Pauli operators
X1; Z1; . . . ; Xk; Zk. Higher levels of the CH are defined
inductively such that

Cjþ1ðkÞ ¼ fV 2 UðkÞ: VC1ðkÞVy � CjðkÞg (1)

for all j � 1. Here, UðkÞ is the group of all unitary
operators on k qubits. In particular, the second level of
the CH coincides with the well-known Clifford group
generated by the Hadamard gate, �=2 phase shift, and
the CNOT gate. The third level includes some non-
Clifford gates such as the Toffoli gate, the �=4 phase shift
T, or the controlled �=2 phase shift. One can easily use
induction to show that CjðkÞ � Cjþ1ðkÞ for all j. Quite

surprisingly, the CH also arises in the classification of
topologically protected gates. Our main theorem asserts
that for any D-dimensional TSC, all topologically pro-
tected gates must belong to the level D of the CH. More
precisely, we prove the following.

Theorem 1.—LetD � 2 and letL be the code space of a
topological stabilizer code on a D-dimensional lattice.
Suppose U is a constant-depth quantum circuit that maps
L to itself. Then the restriction ofU ontoL implements an
encoded gate from the level D of the Clifford hierarchy.

(Note that any stabilizer code has a basis such that all
encoded Pauli operators are products of physical Pauli
operators [18]. Above we implicitly assumed that such a
basis is chosen for both code spaces Li). Let us discuss
some implications of the theorem focusing first on the 2D
geometry, which is arguably the most practical one. The
theorem states that any encoded circuit composed of topo-
logically protected gates must belong to the Clifford group.

Since such circuits can be efficiently simulated classically
[18], our result implies that certain ‘‘nontopological’’
methods such as magic state distillation are necessary to
achieve universality in 2D. Specializing Theorem 1 to the
2D surface codes we reproduce the result of Ref. [5] which
was obtained using the matroid theory.
Our proof of Theorem 1 actually covers a more general

situation where one is given two different codes with code
spaces L1, L2, and a constant-depth quantum circuit U
that mapsL1 toL2. In this case, one can view the codeL2

as a ‘‘local deformation’’ of the code L1. We prove that U
induces an encoded gate from the set CD provided that both
L1 andL2 areD-dimensional TSCs. For the 2D geometry,
this shows that any chain of local deformations L1 !
L2 ! . . . ! Lt implements an encoded Clifford group
operator provided that one has uniform bounds on the
locality and the distance of all intermediate codes. Such
chains of local deformation can be used, for instance, to
describe braiding of topological defects used in the surface
code architecture to implement encoded CNOT gates [3].
To the best of our knowledge, the only example of a

3D TSC with a topologically protected non-Clifford gates
is the punctured 3D color code developed by Bombin and
Martin-Delgado [13]. It encodes one logical qubit with a
transversal�=4 phase shift which belongs to the third level
of the CH.
Although the set CDðkÞ is finite for all D, it generates a

dense subgroup of UðkÞ for D � 3. Hence, Theorem 1
does not rule out a possibility that topologically protected
gates can be computationally universal for D � 3.
However, under certain extra assumptions Theorem 1 has
the following corollary that rules out universality of topo-
logically protected gates for any spatial dimension D.
Corollary 1. Consider any family of D-dimensional

topological stabilizer codes such that the number of logical
qubits k is independent of the lattice size L. Then for
any fixed circuit depth h ¼ Oð1Þ and all large enough L,
the group generated by encoded gates implementable
by depth-h circuits is contained in the level D of the
Clifford hierarchy.
For example, Corollary 1 shows that there is no universal

set of protected gates for the D-dimensional version of the
toric code [2] (for any D). On the other hand, this result
does not apply to Haah’s 3D model [14]. Let us emphasize
that our results are restricted to unitary operations.
In particular, supplementing the set of available operations
by measurements may yield universality; hence, our results
are compatible with, e.g., the computational scheme pro-
posed in Ref. [13].
Constant-depth circuits and, more generally, locality

preserving unitary maps play an important role in the
classification of different types of topological quantum
order in condensed matter physics [19]. In particular, it
was recently shown by Bombin et al. [12,20] that any
translation-invariant 2D TSC on an infinite lattice is
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equivalent modulo constant-depth circuits to one or several
copies of the surface code. However, this result does not
say anything about topologically protected gates since the
latter are only defined in finite settings. It is also known
that constant-depth circuits by themselves are not sufficient
for encoding information into a topological code [21].

In the rest of the Letter, we sketch the proof of Theorem 1
and its corollary. All technical details can be found in
Ref. [22]. To illustrate the proof strategy, let us first con-
sider the standard toric code with two logical qubits. Recall
that logical Pauli operators of the toric code correspond to
noncontractible closed loops on the primal and the dual
lattices [10]. Let �1 and �2 be some fixed horizontal and
vertical noncontractible strips of width 1, see Fig. 1. Then
we can choose a complete set of 15 nontrivial logical Pauli
operators supported in � � �1 [ �2. Alternatively, we can
choose noncontractible strips �1 and �2 as translations of
�1 and �2, respectively, by half the lattice size, see Fig. 1.
Since the toric code is translation invariant, there exists
a complete set of logical Pauli operators supported on
� � �1 [ �2.

Consider any unitary operator U implementable by a
constant-depth quantum circuit with short-range gates. Let
P and Q be any pair of logical Pauli operators. We can
always find logical operators P� andQ� equivalent modulo

stabilizers to P andQ such that P� is supported on �, while

Q� is supported on �. The key observation is that the
commutator

K � P�ðUQ�U
yÞPy

�ðUQy
�U

yÞ (2)

acts nontrivially only on Oð1Þ qubits located near the
intersection of � and �. Indeed, the evolution O �
UOUy of any observable O enlarges its support at most
by � ¼ hr, where h is the depth ofU and r is the maximum
range of its gates. Loosely speaking, � is the radius of a
‘‘light cone’’ describing evolution of observables under U.
Note that in our case � ¼ Oð1Þ. In particular, V � UQ�U

y
is supported inB�ð�Þ—the set of all qubits within distance

� from �. Furthermore, the standard causality argument
implies that all gates of U lying outside the light cone
B�ð�Þ can be omitted without changing V. This shows

that K ¼ P�VP
y
�Vy, where V is a circuit of depth 2hþ 1

composed of gates of range r. Any gate in V must overlap
with the light coneB�ð�Þ. Here we used the fact thatQ� is

a product of single-qubit Pauli operators which can be
regarded as a depth-1 circuit. Applying the same causality

argument to the evolution Py
� ! VPy

�Vy, we conclude that
K ¼ P�WPy

�Wy, whereW is obtained from V by omitting

all gates lying outside the light cone of �, that is,
Brð2hþ1Þð�Þ. Hence, W has support only in BOð�Þð� \ �Þ.
The evolution W ! P�WPy

� does not enlarge the support

of W since P� is a product of single-qubit Pauli operators.

We conclude that K has support only in BOð�Þð� \ �Þ
which contains only Oð1Þ qubits.
Let L be the four-dimensional code space of the toric

code and � be the projector onto L. By assumption of
the theorem, U preserves the code space L, that is,
U� ¼ �U. Since the operators U, P�, Q� as well as their

Hermitian conjugates preserve L, we conclude that K
preserves L as well. However, since K acts only on Oð1Þ
qubits, the macroscopic distance property of the toric code
implies that K is a trivial logical operator, that is,

K� ¼ c� (3)

for some complex coefficient c. We claim that in fact
c ¼ �1. Indeed, since K is a unitary operator, one must
have jcj ¼ 1. Furthermore, Eq. (3) can be rewritten as
VP�V

y�¼cP��, where V ¼ UQ�U
y. Since P2

� ¼ ei�I

for some phase factor ei� this implies ei� ¼ c2ei�, that is,
c ¼ �1. To conclude, we have shown that

P�ðUQ�U
yÞ� ¼ �ðUQ�U

yÞP�� (4)

for any pair of logical Pauli operators P, Q. Let �P, �Q, and
�U be the encoded two-qubit operators implemented by P,
Q, U, respectively. Let �R ¼ �U � �Q � �Uy. From Eq. (4) one
infers that �P � �R ¼ � �R � �P. Since �P could be an arbitrary
two-qubit Pauli operator, this is possible only if �R is a
Pauli operator itself. However, since this is true for any
Pauli �Q, we conclude that �U belongs to the Clifford group,
see Eq. (1).
The key technical result that allows one to extend the

above arguments to general TSCs is the Cleaning Lemma
of Ref. [6]. To illustrate the main idea, we shall now
consider a general 2D TSC with a code space L. Let P,
Q 2 C1ðnÞ be any Pauli operators preservingL and imple-
menting encoded Pauli operators �P ¼ PjL and �Q ¼ QjL.
Operators P,Q as above will be referred to as logical Pauli
operators. Let R ¼ UQUy and �R ¼ RjL. Note that
�R ¼ �U �Q �Uy. If we can show that the commutator K �
PRPyRy implements the encoded �I operator, �K ¼ �I,
the same algebraic arguments as above would show that �U
is in the Clifford group.
We will say that a subset of physical qubitsM is correct-

able iff for any logical Pauli operator P supported inside
M, the encoded operator �P ¼ PjL is proportional to
the identity. By definition, any subset M of size smaller
than the code distance d is correctable. We will use the
following facts.

FIG. 1 (color online). Noncontractible closed strips �1, �2 and
�1, �2 on the torus.
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Lemma 1 (Cleaning Lemma [6]). Suppose M is a
correctable subset of qubits. Then for any logical Pauli
operator P there exists a stabilizer S such that PS acts
trivially on M.

Lemma 2 (Union Lemma [17,23]). SupposeM and K are
disjoint correctable subsets of qubits such that the distance
between M and K is greater than the diameter � of the
stabilizer generators. Then the unionM [ K is correctable.

Let L be the linear size of the physical lattice and �
be the diameter of the stabilizer generators. For any integer
1 � R � L the lattice can be partitioned into three dis-
joint regions, � ¼ A [ B [ C, such that each region A ¼
[iAi, B ¼ [jBj, C ¼ [kCk consists of disjoint chunks of

diameter OðRÞ separated by distance �ðRÞ, see Fig. 2 for
an example. We assume that the lattice is large enough so

we can choose �, hr � R � ffiffiffi

d
p

(recall that r denotes the
range of the gates in U, whereas h is the depth of U).

This choice guarantees for any � ¼ OðhrÞ, the � neigh-
borhood B�ðAjÞ of any chunk Aj contains fewer qubits

than the code distance d; hence, B�ðAjÞ is correctable.

Furthermore, since the separation between B�ðAiÞ and

B�ðAjÞ with i � j is larger than �, the Union Lemma

implies that the entire region B�ðAÞ ¼ [iB�ðAiÞ is cor-

rectable. In a similar fashion, we can show that the regions
B�ðBÞ and C are correctable.

Applying the Cleaning Lemma to the logical Pauli
operator Q and the region B�ðAÞ, we can find a stabilizer

S1 such that QS1 acts trivially on B�ðAÞ. Applying the

same arguments to the logical Pauli operator P and the
regionB�ðBÞ, we can find a stabilizer S2 such that PS2 acts
trivially on B�ðBÞ. Replacing Q and P by equivalent

logical operator QS1 and PS2 (which does not change �Q
and �P), we can now assume that

suppðQÞ \B�ðAÞ ¼ ; and suppðPÞ \B�ðBÞ ¼ ;:
Consider the evolution Q ! UQUy. It enlarges the sup-
port ofQ at most by rh < �, so that the light cone ofQ and
all gates of U overlapping with it are contained in B [ C.
Applying the causality argument used in the toric code
example, we conclude that UQUy can be implemented
by a depth-(2hþ 1) circuit V with gates of range r and
all gates of V are supported in B [ C. Note that K ¼
PVPyVy. Applying the causality argument to the time
evolution Py ! VPyVy which is characterized by a light
cone of radius rð2hþ 1Þ< �, we conclude that K ¼
PWPyWy, where W is obtained from V by omitting all
gates lying outside the light cone of ðPÞ. Our assumptions
on suppðPÞ imply that any gate supported in B or over-
lapping with B lies outside the light cone of suppðPÞ.
Hence, all gates of W are supported in C. The evolution
W ! PWPy does not enlarge the support ofW since P is a
product of single-qubit Pauli operators. We conclude that
K is supported in C which is a correctable region as argued
above.
Let K ¼ P

�c�K� be the expansion of K in the basis of
Pauli operators, where c� are complex coefficients and K�

are n-qubit Pauli operators. Note that all K� are supported
in C. Then

K� ¼ �K� ¼ X

�

c��K��:

Since C is a correctable region, �K�� ¼ x�� for some
complex coefficient x�. This shows that K� ¼ c� for
some coefficient c. The same arguments as in the toric
code example show that c ¼ �1. This proves that �K �
KjL ¼ �I and completes the proof of the theorem for
D ¼ 2 and a single TSC.
The generalization of the proof to D> 2 consists in a

recursive application of these arguments using a partition
of the lattice into Dþ 1 regions. This argument, the proof
of Theorem 1 for the case of two different TSCs and the
proof of Corollary 1 can be found in the long version of this
Letter [22].
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