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We propose a new measure to characterize the dimension of complex networks based on the ergodic

theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated

by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to

the context of complex networks. The method is validated with reliable results for both synthetic networks

and real-world networks such as the world air-transportation network or urban networks, and provides a

computationally fast way for estimating the dimensionality of networks which only relies on the local

information provided by the walkers.
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Network science has influenced the recent progress
in many areas of statistical and nonlinear physics [1].
The discovery of the real architecture of interactions of
many systems studied under the former disciplines [2–4]
changed the usual mean-field way to tackle problems aris-
ing in sociology, biology, epidemiology, and technology
among others [5]. Furthermore, the blossom of the network
theoretical machinery [6], has provided a forefront frame-
work to interpret the relations encoded in large data sets
of diverse nature and fostered the application of new
techniques, such as community detection algorithms [7],
to coarse grain the complex and hierarchical landscape
of interactions of real-world systems.

Recently, geometrical concepts have been exploited to
describe and classify the structure of complex networks
beyond purely topological aspects [8–11]. In particular,
the box-counting technique, widely used for estimating
the capacity dimension D0 of an object, has been recently
extended, as a box-covering algorithm, to characterize the
dimensionality of complex networks [11–14]. This tech-
nique proceeds by calculating the number N of boxes of
Euclidean volume Ld required to cover an object, being

the capacity dimension D0 of such object given by D0 ¼
limL!0

logN
logð1=LÞ . The capacity dimension D0 is thus seen as

an upper bound to the Hausdorff dimension.
The box-covering approach, while being the most natu-

ral and elegant extension of the concept of fractal dimen-
sion to networks, suffers from some difficulties. First, in
order to tile the network and to unambiguously relate the
box-covering and capacity dimensions, the object under
study must be embedded in a metric space, something that
does not apply in the more general case of a complex
network. This subtle problem can be overcome by restrict-
ing to spatially embedded complex networks [14]. A sec-
ond important issue is the need of full knowledge of the
network topology in order to perform the box-covering
procedure. This constraint faces the limitations related to

storing the complete network backbone, indeed, the com-
putation of the capacity dimension becomes unpractical
for embedding dimensions larger than three [15]. Finally,
another related problem is that of finding the optimum
covering, whose computational complexity is NP hard [13].
The above difficulties for calculating the capacity di-

mension of a self-similar object are however circumvented
in the dynamical systems literature by, instead, calculating
its correlation dimension [15]. Here we take advantage of
this alternative characterization to compute the dimension
of complex networks, relying on an extension of the
Grassberger-Procaccia algorithm [15,16]. The key idea,
to extend this concept to the network realm, is to generate
random walkers surfing the network whose dimension we
want to estimate and to study their actual trajectories as
time series. As a byproduct, the extension of this technique
opens the door to the use of the theoretical machinery
inherited from the ergodic theory of dynamical systems
in the characterization of the structure of networks.
Indeed, the study of the structure of networks relying on

the theory of stochastic processes, such as random walks,
has been successfully applied in the past for designing
ranking algorithms, such as Google [17], and unveiling
the community structure [18] or the nature of degree-
degree correlations [19] in complex networks. In our
case, although random walkers are stochastic processes
which have an underlying infinite-dimensional attractor,
their trajectories are expected to evidence temporal corre-
lations intimately related to the structure of the underlying
network that confines their movement. Thus, in the case of
self-similar correlations an associated dimension can be
properly defined, yielding a reliable [20] estimation of the
underlying network’s dimension. In the rest of the Letter,
after introducing the method, we present some results for
both synthetic and real spatial networks [22] and compare
them with those results obtained by means of box-covering
techniques.
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We start by introducing the method for estimating the
correlation dimension in complex networks. Let G be an
undirected network with N nodes and L links so that
each node i of G is labeled with a generic vector vi, where
v 2 Rd, or 2 Nd when the space is discrete. Consider a
trajectory of length n generated by an ergodic random
walker surfing the network G, described by the series
fv1; v2; . . . ; vng. Note that in the case of spatially embedded
networks, vi uniquely characterizes the position of node i
in the underlying space. For instance, in a two-dimensional
space, vi ¼ ðvx; vyÞT and the series reads fvxð1Þ; vyð1Þ;
vxð2Þ; vyð2Þ; . . . ; vxðnÞ; vyðnÞg. This series is the object of

study in order to describe the geometry and dimension ofG
[23] and the first step is to apply embedding techniques to
fvtgnt¼1. Inspired by Taken’s embedding theorem [24], we
proceed to construct the surrogate vector-valued series
fVðtÞg where VðiÞ 2 Rm�d:

VðiÞ ¼ ½viþ1; . . . ; viþm�1�; (1)

where m is the so-called embedding dimension. Then, the
correlation sum function CmðrÞ is defined as the fraction
of pairs of vectors whose distance is smaller than some
similarity scalar r 2 R [25]:

CmðrÞ ¼
2
P

i<j �ðkVðiÞ � VðjÞk � rÞ
ðn�mÞðn�mþ 1Þ ; (2)

where �ðxÞ is the Heaviside step function, and k � � � k is

usually a p-norm kxkp¼½Pijxijp�1=p. Without loss of

generality, here we choose k � � � k as the L1 norm, kxk1 ¼
maxðjx1j; jx2j; . . . ; jxnjÞ, that induces the so-called

Chebyshev distance. Note that the use of the Euclidean
norm was originally proposed in Ref. [16], while the use of
maximum norm was used by Takens in Ref. [26].
Based on arguments from ergodic theory [15,16], we

conjecture that when the series is extracted from the tra-
jectory of a walker surfing a network with well-defined
dimension, for sufficiently long series and sufficiently
small values of r, CmðrÞ evidences a scaling regime
such that

lim
r!0

lim
n!1

log½CmðrÞ�
logðrÞ ¼ �m; (3)

where�m ! � for sufficiently large embedding dimension
(whereas Whitney’s theorem provides as an upper bound
m> 2Dþ 1, in this case we will show that the correlation
dimension saturates for relatively small values of m as the
random walker series are noise-free). Thus, � is the esti-
mate of the correlation dimension of the underlying space,
here the complex network under study. Note that, in prac-
tice, the scaling regime is expected to appear only at an
intermediate range r0 < r < r1, where r0 �Oð10�2hvxiÞ
is a lower cutoff due to poor statistics (noise regime)
whereas r1 is an upper cutoff due to nonlinear effects
(macroscopic regime) [15,27]. We will show that the
walker size required to capture the network’s geometry is
only of order OðnÞ, where n is the number of nodes.
In order to validate the above method, we first address a

synthetic network that can be understood as a discrete limit
of a smooth metric space with a well-defined Hausdorff
dimension. In the left panel of Fig. 1 we plot the correlation
function CmðrÞ applied to a random walker on a two-
dimensional lattice, as this is a discretized version of the

FIG. 1. (Left) Log-log plot of the correlation sum CmðrÞ as a function of similarity r, for a series of 4� 104 data extracted from an
unbiased random walker in a 2D lattice of 1000 nodes (with correlation dimension 2) where v ¼ ðvx; vyÞ and vx, vy 2 ½1; 1000�, for
different embedding dimensions m. There exists a scaling regime where the slope of the correlation sum approaches 2 for increasing
values of m (for m ¼ 4, we find � ¼ 1:92� 0:1). (Right panel, bottom) Log-log plot of the correlation sum CmðrÞ as a function of
similarity r, for a series of 104 data generated by a random walker over a fully connected network, for different values of the
embedding dimension m. In this network each node is labeled with a real value v � v 2 ½0; 1�. In all cases a scaling CmðrÞ � r�m is
found. (Right panel, top) Correlation exponent �m as a function of the embedding dimension m. The correlation exponent increases
linearly with the embedding dimension m, what suggests an infinite-dimensional network.
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Euclidean spaceR2, for different embedding dimensionsm.
In this lattice, each node is labeled by a two-dimensional
vector (vx,vy) (d ¼ 2) wherevx,vy 2 ½1; 1000� are natural
numbers.Wefind thatCmðrÞ evidences a scaling regionwith
�m ! 2, which suggests that the underlying network has a
well-defined dimension equal to 2, i.e., the Hausdorff
dimension of the plane.

As a further validation we address the case of a fully
connected network, in which all the nodes are connected
among each other, which is usually seen as the discrete
version of an infinite-dimensional space. Note that a fully
connected network does not have a natural spatial embed-
ding and therefore, for the sake of simplicity, we label each
node by a single real number v 2 ½0; 1� (d ¼ 1). In the
right panel of the Fig. 1 we represent the correlation sum
of the generated trajectory for different embedding dimen-
sions m (bottom panel). In all the cases we find a clear
scaling showing different slopes �m. In the top panel of the
same figure we plot the estimated value �m as a function of
m, pointing out a linear dependence �m � m. This lack of
convergence suggests that the underlying structure is infi-
nite dimensional, as expected.

Once we have validated the method in synthetic net-
works we tackle the characterization of real-world
networks. We first address the case of the global air-
transportation network [28], as this is a paradigmatic spa-
tially embedded network whose dimension has been
recently claimed to be larger than two [14]. This network
is formed byN ¼ 3618 nodes (the airports) andL ¼ 13514
links denoting the commercial routes among them.As in the
case of the two-dimensional latticewe label each node i by a
vector vi ¼ ðxi; yiÞ (d ¼ 2) that determines the normalized
geographical coordinates of these airports, where xi, yi 2
½0; 1�. In Fig. 2 we show the results of CmðrÞ for a random
walk trajectory of 2� 104 steps, i.e., an original series
of 4� 104 data. We find an intermediate regime where
a scaling CmðrÞ � r�m shows up, and �m ! � � 3
for increasing values of the embedding dimension m.
This value coincides with the box-covering dimension of
the air transportation network, as suggested recently [14],
pointing out that, albeit embedded in two-dimensional
space, this network has a larger effective dimensionality.
Furthermore, note that the random walk has a length of
2� 104 steps, thus revealing that it is possible to derive an
accurate value of the network dimension with only a rather
small amount of local information.

To round off, we explore the dimension of urban net-
works [29], and address two paradigmatic cases of urban
development: the case of San Joaquin county (California,
US), having N ¼ 18623 nodes and L ¼ 23874 edges, and
that of Oldenburg (Germany), with N ¼ 6105 nodes and
L ¼ 7035 edges [see Figs. 3(a) and 3(b) for graphical
illustrations]. In both networks, each node is characterized
by a two-dimensional vector (x, y) where x, y 2 ½0; 10000�
(d ¼ 2). Notice that San Joaquin is a recently founded

city (1920) whose shape is the result of a planning process
and, accordingly, displays a gridlike road structure.
Conversely, Oldenburg (Germany) is an old city whose
foundation dates back to the twelfth century and whose
road pattern is the result of a self-organized growth. In
Figs. 3(c) and 3(d), we show their respective correlation
sum functions. While the case of San Joaquin (c) evidences
a scaling regime with a correlation dimension converging
to 2 (� ¼ 1:83� 0:1 for m ¼ 3), no scaling is found for
the self-organized city of Oldenburg (d), suggesting that
this latter network does not possess a well-defined dimen-
sion. These different behaviors deepen in the recently
observed structural differences between cities that have
grown according to different evolutionary mechanisms
[30,31]. In the Supplemental Material [32] we include
additional analysis and estimation of the correlation di-
mension of other real world examples including techno-
logical (Internet at the autonomous system level [33] and
the Italian power grid [34]) and road (San Francisco [29]
and USA [35]) networks. Their corresponding analysis
yields a well-defined and justified correlation dimension.
To conclude, in this work we propose an extension of the

Grassberger-Procaccia method to estimate the correlation
dimension of a complex network from the analysis of the
trajectories of random walkers on top of them. Although
the original method was initially designed as a tool to
retrieve the attractor dimension of low-dimensional chaotic
dynamics, the presence of temporal correlations in
stochastic dynamics (here induced by the geometry of
the network) also produces similar behaviors under this
celebrated framework [27,36]. Thus, in this work we delib-
erately exploit this property when using random walks as
the trajectories under study. This probes the possibility of
making use of concepts and tools from the ergodic theory
of dynamical systems in the realm of complex networks.
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FIG. 2. Log-log plot of the correlation sum CmðrÞ as a function
of similarity r, for a series of 2� 104 data extracted from a
random walker of 2� 104 steps over the worldwide air trans-
portation network (see the text), for increasing embedding
dimensions m. The correlation exponent converges to � ¼ 3
(for m ¼ 4, we obtain an estimate � ¼ 2:95� 0:1).
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Our results suggest that the dimensionality of spatially
embedded networks can be retrieved from this analysis. We
highlight that the method only requires local information
and it works with rather small time series. This constitutes
an advantage for saving memory resources on one hand,
and perhaps more importantly, it provides a way to make
estimates about the dimension of a network without having
global information of its structure. An example of such a
situation is the routing of information in the Internet, as it
is easy to have access to the sequence of IP’s a packet
navigates through, while having access to the whole
Internet map seems unfeasible.

Further work should be done in order (i) to check in
which situations this procedure can be performed, (ii) to
relate the meaning of the exponent found in this work with
other exponents recently defined in the network literature,
and (iii) to extend this method to the study of generic
networks beyond spatially embedded ones.
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