
Modeling Human Dynamics of Face-to-Face Interaction Networks

Michele Starnini,1 Andrea Baronchelli,2 and Romualdo Pastor-Satorras1

1Departament de Fı́sica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain
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Face-to-face interaction networks describe social interactions in human gatherings, and are the

substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human

behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of

conversations per person, or of interconversation times. Despite several recent attempts, a general

theoretical understanding of the global picture emerging from data is still lacking. Here we present a

simple model that reproduces quantitatively most of the relevant features of empirical face-to-face

interaction networks. The model describes agents that perform a random walk in a two-dimensional

space and are characterized by an attractiveness whose effect is to slow down the motion of people around

them. The proposed framework sheds light on the dynamics of human interactions and can improve the

modeling of dynamical processes taking place on the ensuing dynamical social networks.
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Uncovering the patterns of human mobility [1] and
social interactions [2] is pivotal to decipher the dynamics
and evolution of social networks [3], with wide practical
applications ranging from traffic forecasting to epidemic
containment. Recent technological advances have made
possible the real-time tracking of social interactions in
groups of individuals, at several temporal and spatial
scales. This effort has produced large amounts of empirical
data on human dynamics, concerning letter exchanges [4],
email exchanges [5], mobile phone communications [1], or
spatial mobility [6], among others.

Especially noteworthy is the data on face-to-face human
interactions recorded by the SocioPatterns collaboration
[7] in closed gatherings of individuals such as schools,
museums, or conferences. SocioPatterns deployments
measure the proximity patterns of individuals with a
space-time resolution of �1 m and �20 sec by using
wearable active radio-frequency identification devices.
The data generated by the SocioPattern infrastructure
show that human activity follows a bursty dynamics, char-
acterized by heavy-tailed distributions for the duration of
contacts between individuals or groups of individuals and
for the time intervals between successive contacts [8,9].

The bursty dynamics of human interactions has a deep
impact on the properties of the temporally evolving net-
works defined by the patterns of pairwise interactions [10],
as well as on the behavior of dynamical processes devel-
oping on top of those dynamical networks [9,11–16]. A
better understanding of these issues calls for new models,
capable to reproduce the bursty character of social inter-
actions and trace back their ultimate origin, beyond con-
sidering their temporal evolution [17]. Previous modeling
efforts mostly tried to connect the observed burstiness to
some kind of cognitive mechanisms ruling human mobility
patterns, such as a reinforcement dynamics [18], cyclic

closure [19] or preferential return rules [20], or by focusing
on the relation between activity propensity and actual
interactions [17].
In this Letter, we present a simple model of mobile

agents that captures the most distinctive features of the
empirical data on face-to-face interactions recorded by
the SocioPatterns collaboration. Avoiding any a priori hy-
pothesis on human mobility and dynamics, we assume that
agents perform a random walk in space [21] and that
interactions among agents are determined by spatial prox-
imity [22]. The key ingredients of the model are the
following: We consider that individuals have different
degrees of social appeal or attractiveness, due to their
social status or the role they play in social gatherings, as
observed in many social [23], economic [24], and natural
[25] communities. The effect of this social heterogeneity is
that interactions, as well as the random walk motion of the
agents, are biased by the attractiveness of the peers they
met over time. Additionally, we assume, according to
experimental data, that not all the agents are simulta-
neously present in the system, but can jump in and out of
an active state in which they can move and establish
interactions. We will see that these simple assumptions
allow the model to reproduce many of the properties of
face-to-face interaction networks.
The model is defined as follows (see Fig. 1): N agents

are placed in a square box of linear size L with periodic
boundary conditions, corresponding to a density � ¼
N=L2. Each individual i is characterized by her attractive-
ness or social appeal, ai which represents her power to
raise interest in the others. The attractiveness ai of the
agents is a (quenched) variable randomly chosen from a
prefixed distribution �ðaÞ, and bounded in the interval
ai 2 ½0; 1Þ. Agents perform a random walk biased by the
attractiveness of neighboring individuals. Whenever an
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agent intercepts, within a distance smaller than or equal to
d, another individual, they start to interact. We consider
that both agents are interacting as long as their relative
distance in smaller than d. Crucially, the more attractive an
agent j is (the largest her attractiveness aj), the more

interest she will raise in the other agent i, who will slow
down her random walk exploration accordingly. This fact
is taken into account by a walking probability piðtÞ which
takes the form

piðtÞ ¼ 1� max
j2N iðtÞ

fajg; (1)

whereN iðtÞ is the set of neighbors of agent i at time t, i.e.,
the set of agents that, at time t, are at a distance smaller
than or equal to d from agent i. Hence, the biased random
walk performed by the agents is defined as follows: At each
time step t, each agent i performs, with probability piðtÞ, a
step of length v along a direction given by a randomly
chosen angle � 2 ½0; 2�Þ. With the complementary proba-
bility 1� piðtÞ, the agent does not move. Thus, according
to Eq. (1), if an agent i is interacting with other agents, she
will keep her position in the following time step with a
probability proportional to the appeal of his most interest-
ing neighbor.

Furthermore, the empirical observations of
SocioPatterns data show that not all the agents involved
in a social event are actually present for its entire duration:
Some agents leave the event before the end, some join it
later after the beginning, and some others leave and come
back several times. Therefore we assume that agents can be
in an active or an inactive state. If an individual is active,
she moves in space and interacts with the other agents;
otherwise she simply rests without neither moving nor
interacting. At each time step, one inactive agent i can
become active with a probability ri, while one active and
isolated agent j (not interacting with other agents) can
become inactive with probability 1� rj. The activation

probability ri of the individual i thus represents her active-
ness in the social event, the largest the activity ri, the more

likely agent i will be involved in the event. We choose the
activation probability ri of the agents randomly from a
uniform distribution �ðrÞ, bounded in ri 2 ½0; 1�, but we
have verified that the model behavior is independent
of the activity distribution functional form (even if we
consider a constant activity rate, ri ¼ r for all agents,
we obtain very similar results, see Supplemental Material
[26], Fig. 1).
Within this framework, each individual performs a dis-

crete random walk in a 2D space, interrupted by interac-
tions of various duration with peers. The movement of
individuals is performed in parallel in order to implement
the time resolution (20 sec) at which empirical measure-
ments are made [8]. The model is Markovian, since agents
do not have memory of the previous time steps. The full
dynamics of the system is encoded in the collision proba-
bility pc ¼ ��d2, the activation probability distribution
�ðrÞ, and the attractiveness distribution�ðaÞ. The latter can
hardly be accessed empirically, and is likely to be the
combination of different elements, such as prestige, status,
role, etc. Moreover, in general, attractiveness is a relational
variable, the same individual exerting different interest on
different agents. Avoiding any speculations on this point,
we assume the simplest case of a uniform distribution for
the attractiveness [27]. Remarkably, this simple assump-
tion leads to a rich phenomenology, in agreement with
empirical data.
In the following we will contrast results obtained by the

numerical simulation of the model against empirical
results from SocioPatterns deployments in several different
social contexts: a Lyon hospital (‘‘hosp’’), the Hypertext
2009 conference (‘‘ht’’), the Sociètè Francaise d’Hygiène
Hospitalière congress (‘‘sfhh’’), and a high school
(‘‘school’’). A summary of the basic properties of the
data sets is provided in Table I (see Refs. [8,9,28] for
further description and details). The model has been simu-
lated adopting the parameters v ¼ d ¼ 1, L ¼ 100, and
N ¼ 200. Different values of the agent density � are
obtained by changing the box size L. In the initial con-
ditions, agents are placed at randomly chosen positions,

TABLE I. Some properties of the SocioPatterns data sets under
consideration: N, number of different individuals engaged in
interactions; T, total duration of the contact sequence, in units of
the elementary time interval t0 ¼ 20 sec ; �p, average number of
individuals interacting at each time step; h�ti, average duration
of a contact; hki and hsi: average degree and average strength of
the projected network, aggregated over the whole sequence
(see main text).

Data set N T �p h�ti hki hsi
hosp 84 20 338 0.049 2.67 30 1145

ht 113 5093 0.060 2.13 39 366

school 126 5609 0.069 2.61 27 453

sfhh 416 3834 0.075 2.96 54 502

0.8

0.3

p=0.4

0.1

0.6

FIG. 1 (color online). Left: Blue (dark) colored agents are
active, gray (light) agents do not move nor interact. Interacting
agents, within a distance d, are connected by a link. Right: Each
individual is characterized by a number representing her attrac-
tiveness. The probability for the central individual to move is
p ¼ 1:0� 0:6 ¼ 0:4, since the attractiveness of the inactive
agent is not taken into account.
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and are active with probability 1=2. Numerical results are
averaged over 102 independent runs, each one of duration
T up to Tmax ¼ 2� 104 time steps.

The temporal pattern of the agents’ contacts is probably
the most distinctive feature of face-to-face interaction net-
works [8,9]. We therefore start by considering the distri-
bution of the duration �t of the contacts between pairs of
agents, Pð�tÞ, and the distribution of gap times � between
two consecutive conversations involving a common indi-
vidual, Pð�Þ. The bursty dynamics of human interactions is
revealed by the long-tailed form of these two distributions,
which can be described in terms of a power-law function
[8]. Figure 2 show the distribution of the contacts’ duration
Pð�tÞ and gap times Pð�Þ for the various sets of empirical
data along with the same distributions obtained by simu-
lating the model described above with density � ¼ 0:02. In
the case of the contact duration distribution, numerical and
experimental data match almost perfectly, see Fig. 2 (top).
Moreover, numerical results are robust with respect to
variations of the collision probability pc ¼ �d2�, as
shown in the inset. It also worth highlighting the crucial
role played by the heterogeneity of attractiveness ai.
In fact, assuming it is constant, ai ¼ a (and neglecting

excluded volume effects between agents) our model can be
mapped into a simple first passage time problem [29],

leading to a distribution Pð�tÞ � ð�tÞ�3=2 with an expo-
nential cutoff proportional to d2=ð1� aÞ. The (nonlocal)
convolution of the exponential tails induced by the hetero-
geneous distribution of attractiveness leads in our model to
a power law form, with no apparent cutoff, and with an
exponent larger than 3=2, in agreement with the result
observed in the SocioPatterns data. Regarding the distri-
bution of gap times, Pð�Þ, the model also generates a long-
tailed form, which is compatible, although in this case not
exactly equal, to the empirical data, see Fig. 2 (bottom).
The behavior of the distribution Pð�Þ yielded by the model
is substantially independent of the agent density � also in
this case, as shown in the inset.
Sociopatterns data can be naturally analyzed also in

terms of temporally evolving graphs [10], whose nodes
are defined by the agents, and whose links represent inter-
actions between pairs of agents. Instantaneous networks
are thus formed by isolated nodes and small groups of
interacting individuals, not necessarily forming a clique.
Integrating the information of these instantaneous graphs
over a time window T, which we choose here equal to the
total duration of the contact sequences defining each data
set [30], produces an aggregated weighted network [3],
where the weight wij between nodes i and j represents the

total temporal duration of the contacts between agents i
and j. The weight distribution PðwÞ of the various data sets
are broad [8,9], see Fig. 3 (main), showing that the hetero-
geneity in the duration of individual contacts persists even
when contact durations are accumulated over longer time
intervals. Figure 3 shows that the outcome of the model is
again in excellent agreement with all empirical data, with
the exception of the ‘‘hosp’’ database. The reason for the
departure of this data set with respect to both other data sets
and the model could be attributed to the duration T of the
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FIG. 2 (color online). Distribution of the contact duration,
Pð�tÞ, (top) and distribution of the time interval between con-
secutive contacts, Pð�Þ, (bottom) for various data sets and for the
attractiveness model. Insets: Same distributions for the attrac-
tiveness model with different density. Symbols refer to empirical
data; lines to results of the model, for different densities �.
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FIG. 3 (color online). Weight distribution PðwÞ (main) and
average strength of nodes of degree k, sðkÞ, as a function of k,
(inset) for various empirical data sets and for the aggregate
network obtained by simulating the attractiveness model.
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corresponding sequence of contacts (see Table I), which is
up to four times longer than the other data sets. In the limit
of large T, sporadic interactions can lead to a fully con-
nected integrated network, very different from the sparser
networks obtained for smaller values of T. These effects
extend also to the pattern of weights, which have in the
‘‘hosp’’ database a much larger average value.

Face-to-face networks can be further characterized by
looking at the correlation between the number of different
contacts and the temporal duration of those contacts. These
correlations can be estimated by measuring the strength si
of a node i, defined as si ¼ P

jwij and representing the

cumulated time spent in interactions by individual i, as a
function of its degree ki, defined as the total different
agents with which agent i has interacted. Figure 3 (inset)
shows the growth of the average strength of nodes of
degree k, sðkÞ, as a function of k in the empirical data
sets and in the aggregated network obtained with the
attractiveness model. As one can clearly see, all distribu-
tions (again with the exception of the ‘‘hosp’’ data set) are
well fitted by a power law function sðkÞ � k� with �> 1,
with good agreement between real data and the model
results. The observed superlinear behavior implies that
on average the nodes with high degree are likely to spend
more time in each interaction with respect to the low-
connected individuals [8].

A final important feature of face-to-face interactions,
also revealed in a different context involving human
mobility [20], is that the tendency of an agent to interact
with new peers decreases in time. This fact translates into a
sub-linear temporal growth of the number of different
contacts of single individuals [i.e., the aggregated degree
kiðtÞ], kðtÞ � t�, with �< 1. Figure 4 shows the evolution
of kðtÞ versus time for several agents with a final aggre-
gated degree kðTÞ, both belonging to a single data set
(main) and for the different data sets (inset). The sublinear
behavior of kðtÞ is clear, with � ¼ 0:6� 0:15 depending
on the data set. Moreover, the shapes of the kðtÞ functions
can be collapsed in a single curve by appropriately rescal-
ing the data as kðtÞ=kðTÞ as a function of t=T, Fig. 4 (inset).
Figure 4 shows that, remarkably, the attractiveness model
is also capable of reproducing the behavior of kðtÞ, up to
the rescaling with total T time, again with the exception of
the ‘‘hosp’’ data set.

In summary, in this Letter we have introduced a simple
model of mobile agents that naturally reproduces the social
context described by the SocioPatterns deployments,
where several individuals move in a closed environment
and interact between them when situated within a small
distance (the exchange range of radio-frequency identifi-
cation devices devices). The main ingredients of the model
are (i) agents perform a biased random walk in two-
dimensional space, (ii) their interactions are ruled by a
heterogeneous attractiveness parameter, Eq. (1), and
(iii) not all agents are simultaneously active in the system.

Without any data-driven mechanism, the model is able to
quantitatively capture most of the properties of the pattern
of interactions between agents, both at the level of the
broad distributions of contact and intercontact times, and
at the level of the ensuing temporal network. Importantly,
results are robust with respect to variations of the model
parameters, i.e., the collision probability pc and the activ-
ity distribution functional form, �ðrÞ. We have additionally
checked that results do not depend qualitatively on the
nature of the motion rule, given by Eq. (1). Indeed, other
rules for the walking probability, such as considering
the average of the attractives of the neighbors, i.e., piðtÞ ¼
1�P

j2N iðtÞaj=kiðtÞ, lead substantially to the same

behavior produced by Eq. (1) (see Supplemental Material
[26], Fig. 2). Overall, the proposed framework represents
an important step forward in the understanding of face-to-
face dynamical networks. Confronted with other modeling
efforts of SocioPatterns data [18], our model is not based
on any cognitive assumption (reinforcement dynamics in
Ref. [18]) and furthermore it leads to good agreement
with experimental data without any fine tuning of internal
parameters. It thus opens new interesting directions for
future work, including the study of dynamical processes
taking place in face-to-face networks and possible exten-
sions of the model to more general settings.
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